DOI: 10.3724/SP.J.1260.2011.00272

Aata Biophysica Sinica (生物物理学报) 2011/27:4 PP.272-288

Magnetic Iron Oxide Nanoparticles and Their Applications in Magnetic Resonance Imaging

Magnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI). Now, in vivo applications of iron oxide nanoparticles are gradually shifting from passive targeting mode, such as liver imaging, to active targeting mode, leading to the emerging of a new multidisciplinary field-Molecular Imaging. This review mainly discusses the synthesis of magnetic iron oxide nanoparticles and their MRI applications, especially in molecular imaging of early tumors.

Key words:Magnetic iron oxide nanoparticles,Magnetic resonance,Molecular imaging probe,Tumor

ReleaseDate:2014-07-24 00:29:24

Funds:"973" Program (2011CB935800), the National Natural Science Foundation of China (21003135, 81090271, 20820102035)

1 杨文胜,高明远,白玉白. 纳米材料与生物技术. 北京: 化学工业出版社,2005 Yang WS, Gao MY, Bai YB. Nanomaterials and biotechnology. Beijing: Chemical Industry Press,2005

2 Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D. Nanoscale magnetic resonance imaging. Proc Natl Acad Sci USA, 2009, 106(5): 1313~1317

3 Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature, 2008, 452(7187): 580~589

4 Sun C, Lee JSH, Zhang MQ. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev, 2008, 60(11): 1252~1265

5 Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed, 2008, 47(28): 5122~5135

6 Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev, 2006, 58(14): 1471~1504

7 Qiao RR, Yang CH, Gao MY. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J Mater Chem, 2009, 19(35): 6274-6293

8 Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol, 2006, 24(10): 1211~1217

9 Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS. Cheon J. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc, 2005, 127(35): 12387~12391

10 Hu FQ, Wei L, Zhou Z, Ran YL, Li Z, Gao MY. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater, 2006, 18(19): 2553~2556

11 Lee JH, Huh YM, Jun Y, Seo J, Jang J, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med, 2007, 13(1): 95~99

12 Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med, 2003, 348(25): 2491~2495

13 Schnorr A, Wagner S, Abramjuk C, Wojner I, Schink T, Kroencke TJ, Schellenberger E, Hamm B, Pilgrimm H, Taupitz M. Comparison of the iron oxide-based blood-pool contrast medium VSOP-C184 with gadopentetate dimeglumine for first-pass magnetic resonance angiography of the aorta and renal arteries in pigs. Invest Radiol, 2004, 39(9): 546~553

14 Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang MQ. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res, 2009, 69(15): 6200~6207

15 Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, Sze R, Ellenbogen RG, Olson J, Zhang M. In vivo MRI detection of gliomas by chlorotoxin-conjugated superpara- magnetic nanoprobes. Small, 2008, 4(3): 372~379

16 Cheon J, Lee JH. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res, 2008, 41(12): 1630~1640

17 Jun YW, Seo JW, Cheon A. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res, 2008, 41(2): 179~189

18 Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev, 2001, 53(2): 283~318

19 Liu S, Han Y, Qiao R, Zeng J, Jia Q, Wang YL, Gao MY. Investigations on the interactions between plasma proteins and magnetic iron oxide nanoparticles with different surface modifications. J Phys Chem C, 2010, 114(49): 21270~21276

20 Veiseh O, Gunn JW, Zhang MQ. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev, 2010, 62(3): 284~304

21 Gao J, Hillebrenner HL. Nanotubular probes as ultrasensitive MR contrast agent. USA, 20080124281, 2008

22 Welo LA, Baudisch O. The two-stage transformation of magnetite into hematite. Philos Mag, 1925, 50(296): 399~408

23 Massart R. Preparation of aqueous ferrofluids without using surfactant —— Behavior as a function of the Ph and the counterions. Cr Acad Sci C Chim, 1980, 291(1): 1~3

24 Bate G. Recording materials. In: Wohlfarth EP, ed. Ferromagnetic Materials. North Holland: Elsevier, 1980. 439

25 Rockenberger J, Scher EC, Alivisatos AP. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc, 1999, 121(49): 11595~11596

26 Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nano- crystallites without a size-selection process. J Am Chem Soc, 2001, 123(51): 12798~12801

27 Sun SH, Zeng H. Size-controlled synthesis of magnetite nanoparticies. J Am Chem Soc, 2002, 124(28): 8204~8205

28 Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX. Monodisperse MFe2O4 (M=Fe,Co,Mn) nanoparticles. J Am Chem Soc, 2004, 126(1): 273~279

29 Jana NR, Chen Y, Peng X. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mat, 2004, 16(20): 3931~3935

30 Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater, 2004, 3(12): 891~895

31 Yu WW, Falkner JC, Yavuz CT, Colvin VL. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Comm, 2004, 20: 2306~2307

32 Shi XY, Wang SH, Swanson SD, Ge S, Cao ZY, van Antwerp ME, Landmark KJ, Baker JR. Dendrimer- functionalized shell-crosslinked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv Mater, 2008, 20(9): 1671~1678

33 Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, Sperling RA, Reimer R, Hohenberg H, Parak WJ, Forster S, Beisiegel U, Adam G, Weller H. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano lett, 2007, 7(8): 2422~2427

34 高明远, 李桢. 一种高结晶度的水分散磁性纳米微粒的制备方法. 中国, 03136275.3. 2004.11.24 Gao MY, Li Z. A method for preparing a highly crystallized and water dispersible biocompatible magnetic nanocrystal. China, 03136275.3. 2004.11.24

35 Li Z, Chen H, Bao HB, Gao MY. One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mat, 2004, 16(8): 1391~1393

36 Li Z, Sun Q, Gao MY. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: Mechanism leading to Fe3O4. Angew Chem Int Ed, 2005, 44(1): 123~126

37 高明远, 李桢. 一种制备具有生物相容性的磁性纳米微粒的方法. 中国, 03136273.7. 2003.12.10 Gao MY, Li Z. A method for preparing a biocompatible magnetic nanocrystal. China, 03136273.7. 2003.12.10

38 Li Z, Wei L, Gao MY, Lei H. One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater, 2005, 17(8): 1001~1005

39 Liu SJ, Jia B, Qiao RR, Yang Z, Yu ZL, Liu ZF, Liu K, Shi JY, Han OY, Wang F, Gao MY. A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor: Preparation, characterization and in vivo application. Mol Pharm, 2009, 6(4): 1074~1082

40 Hu FQ, Li Z, Tu CF, Gao MY. Preparation of magnetite nanocrystals with surface reactive moieties by one-pot reaction. J Colloid Interface Sci, 2007, 311(2): 469~474

41 Lu XY, Niu M, Qiao RR, Gao MY. Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a "one-pot" reaction. J Phys Chem B, 2008, 112(46): 14390~14394

42 Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP. In vivo magnetic resonance imaging of transgene expression. Nat Med, 2000, 6: 351

43 Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med, 2001, 7(11): 1241~1244

44 Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron-oxides for MR-imaging. Adv Drug Deliv Rev, 1995, 16(2-3): 321~334

45 Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol, 2001, 19(12): 1141~1147

46 Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 2000, 18(4): 410~414

47 de Vries IJM, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJG, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JWM, Scheenen TWJ, Punt CJA, Heerschap A, Figdor CG. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol, 2005, 23(11): 1407~1413

48 Song HT, Choi J, Huh YM, Kim S, Jun Y, Suh JS, Cheon J. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc, 2005, 127(28): 9992~9993

49 Liu G, Wang ZY, Lu J, Xia CC, Gao FB, Gong QY, Song B, Zhao XN, Shuai XT, Chen XY, Ai H, Gu ZW. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials, 2011, 32(2): 528~537

50 Wei L, Zhou G, Li Z, He L, Gao MY, Tan JQ, Lei H. Detection of toxoplasmic lesions in mouse brain by USPIO- enhanced magnetic resonance imaging. Magn Reson Imaging, 2007, 25(10): 1442~1448

51 Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc, 2006, 128(22): 7383~7389

52 Sharkey RM, Cardillo TM, Rossi EA, Chang CH, Karacay H, McBride WJ, Hansen HJ, Horak ID, Goldenberg DM. Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med, 2005, 11(11): 1250~1255

53 Yang LL, Mao H, Wang YA, Cao ZH, Peng XH, Wang XX, Duan HW, Ni CC, Yuan QG, Adams G, Smith MQ, Wood WC, Gao XH, Nie SM. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small, 2009, 5(2): 235~243

54 陆菁菁,王芳, 金征宇, 钟定荣. 靶向磁性纳米粒子用于肿瘤的磁共振分子成像. 中国医学科学院学报, 2009, 31(2): 124~128 Lu JJ, Wang F, Jin ZY, Zhong DR. Targeted magnetic nanoparticles used as probe for magnetic resonance molecular imaging of tumor. Acta Acad Med Sin, 2009, 31(2): 124~128

55 Montet X, Weissleder R, Josephson L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjugate Chem, 2006, 17(4): 905~911

56 Xie J, Chen K, Lee HY, Xu CJ, Hsu AR, Peng S, Chen XY, Sun SH. Ultrasmall c(RGDyK)-coated Fe3O4 nano- particles and their specific targeting to integrin alpha(v)- beta(3)-rich tumor cells. J Am Chem Soc, 2008, 130(24): 7542~7543

57 Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE. Targeted nanoparticles for detecting and treating cancer. Drug Develop Res, 2006, 67(1): 70~93

58 Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L. Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem, 2006, 49(20): 6087~6093

59 Zhang CF, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, Zentgraf H, Bock M, Eisenhut M, Semmler W, Kiessling F. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superpara- magnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res, 2007, 67(4): 1555~1562

60 Sun C, Sze R, Zhang MQ. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A, 2006, 78A(3): 550~557