DOI: 10.3724/SP.J.1260.2013.30142

Aata Biophysica Sinica (生物物理学报) 2013/29:12 PP.899-910

Research Progresses on Structure and Functions of the Cytoplasmic Polyadenylation Element Binding Proteins

The cytoplasmic polyadenylation element binding proteins(CPEB) are mRNA-binding proteins, and play great roles in invertebrates and vertebrates. In this paper, the research progresses on structure and biological functions of CPEB were reviewed, and the research results of the CPEB in translation repression and activation of mRNA, oogenesis, cellular senescence, development, and synaptic plasticity in neuron were summarized. The molecular mechanisms of related biological incidents were discussed. In the end, the research prospects of CPEB were presented.

Key words:Protein,Translation,Polyadenylation,Cytoplasmic polyadenylation element binding protein (CPEB)

ReleaseDate:2015-04-19 19:20:50

1. Burns DM, Ambrogio AD, Nottrott S, Richter JD. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature, 2011, 473(7345): 105~108

2. Fernandez-Miranda G, Mendez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev, 2012, 11(4): 460~472

3. Richter JD. CPEB: A life in translation. Trends Biochem Sci, 2007, 32(6): 279~285

4. Radford HE, Meijer HA, Moor CH. Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim Biophys Acta, 2008, 1779(4): 217~229

5. Tay J, Richter JD. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell, 2001, 1(2): 201~213

6. Hafer N, Xu S, Bhat KM, Schedl P. The Drosophila CPEB protein Orb2 has a novel expression pattern and is important for asymmetric cell division and nervous system function. Genetics, 2011, 189(3): 907~921

7. Wang XP, Cooper NGF. Characterization of the transcripts and protein isoforms for cytoplasmic polyadenylation element binding protein-3 (CPEB3) in the mouse retina. BMC Mol Biol, 2009, 10: 109. DOI: 10.1186/1471-2199-10-109

8. Groisman I, Ivshina M, Marin V, Kennedy NJ, Davis RJ, Richter JD. Control of cellular senescence by CPEB. Genes Dev, 2006, 20(19): 2701~2712

9. Hansen CN, Ketabi Z, Rosenstierne MW, Palle C, Boesen HC, Norrild B. Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS, 2009, 117(1): 53~59

10. Costa-Mattioli M, Sonenberg N, Richter JD. Translational regulatory mechanisms in synaptic plasticity and memory storage. Prog Mol Biol Transl Sci, 2009, 90: 293~311

11. Mendez R, Richter JD. Translational control by CPEB: A means to the end. Nat Rev Mol Cell Biol, 2001, 2(7):521~529

12. Huang YS, Kan MC, Lin CL, Richter JD. CPEB3 and CPEB4 in neurons: Analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J, 2006, 25(20): 4865~4876

13. Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell, 1994, 79(4): 617~627

14. Hake LE, Mendez R, Richter JD. Specificity of RNA binding by CPEB: Requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol, 1998, 18(2): 685~693

15. Merkel DJ, Wells SB, Hilburn BC, Elazzouzi F, Perez-Alvarado GC, Lee BM. The C-terminal region of cytoplasmic polyadenylation element binding protein is a ZZ domain with potential for protein-protein interactions. J Mol Biol, 2013, 425: 2015~2026

16. Groisman I, Huang YS, Mendez R, Cao QP, Theukauf W, Richter JD. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: Implications for local translational control of cell division. Cell, 2000, 103(3): 435~447

17. Reverte CG, Ahearn MD, Hake LE. CPEB degradation during Xenogus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol, 2001, 231(2): 447~458

18. Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature, 2000, 404(6775): 302~307

19. Liu JM, Schwartz JH. The cytoplasmic polyadenylation element binding protein and polyadenylation of messenger RNA in Aplysia neurons. Brain Res, 2003, 959(1): 68~76

20. DePace AH, Santoso A, Hillner P, Weissman JS. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell, 1998, 93(7): 1241~1252

21. Raveendra BL, Siemer AB, Puthanveettil SV, Hendrickson WA, Kandel ER, McDermott AE. Characterization of prion-like conformational changes of the neuronal isoform of Aplysia CPEB. Nat Struct Mol Biol, 2013, 20(4): 495~501

22. Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell, 2011, 43(6): 853~866

23. D'Ambrogio A, Nagaoka K, Richter JD. Translational control of cell growth and malignancy by the CPEBs. Nat Rev Cancer, 2013, 13(4): 283~290

24. Kim JH, Richter JD. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell, 2006, 24(2): 173~183

25. Lin CL, Evans V, Shen SH, Xing Y, Richter JD. The nuclear experience of CPEB: Implications for RNA processing and translational control. RNA, 2010, 16(2):338~348

26. Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell, 2004, 119(5): 641~651

27. Rouhana L, Wang LT, Buter N, Kwak JE, Schiltz CA, Gonzalez T, Kelley AE, Landry CF, Wickens M. Vertebrate GLD2 poly(A) polymerases in the germline and the brain. RNA, 2005, 11(7): 1117~1130

28. Rouhana L, Wickens M. Autoregulation of GLD-2 cytoplasmic poly(A) polymerase. RNA, 2007, 13: 188~199

29. Groppo R, Richter JD. Translational control from head to tail. Curr Opin Cell Biol, 2009, 21(3): 444~451

30. Sarkissian M, Mendez R, Richter JD. Progesterone and insulin stimulation of CPEB dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev, 2004, 18(1): 48~61

31. Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol, 1995, 15(9):4990-4997

32. Stebbins-Boaz B, Cao Q, Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell, 1999, 4(6): 1017~1027

33. StebbinsBoaz B, Hake LE, Richter JD. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J, 1996, 15(10): 2582~2592

34. Cao QP, Richter JD. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J, 2002, 21(14): 3852~3862

35. Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature, 2005, 433(7025): 477~480

36. Standart N, Minshall N. Translational control in early development: CPEB, P-bodies and germinal granules. Biochem Soc Trans, 2008, 36: 671~676

37. Papin C, Rouget C, Mandart E. Xenopus Rbm9 is a novel interactor of XGld2 in the cytoplasmic polyadenylation complex. FEBS J, 2008, 275(3): 490~503

38. Minshall N, Reiter MH, Weil D, Standart N. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem, 2007, 282(52): 37389~37401

39. Jung MY, Lorenz L, Richter JD. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol, 2006, 26(11): 4277~4287

40. Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, Tong L. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease. Nature, 2006, 444(7121): 953~956

41. Katsu Y, Minshall N, Nagahama Y, Standart N. Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: Implications for dual and independent roles of MAP and Cdc2 kinases. Dev Biol, 1999, 209(1): 186~199

42. Wong LC, Costa A, McLeod I, Sarkeshik A, Yates J III, Kyin S, Perlman D, Schedl P. The functioning of the Drosophila CPEB protein Orb is regulated by phosphorylation and requires casein kinase 2 activity. PLoS One, 2011, 6(9): e24355

43. Martinez SE, Yuan L, Lacza C, Ransom H, Mahon GM, Whitehead IP, Hake LE. XGef mediates early CPEB phosphorylation during Xenopus oocyte meiotic maturation. Mol Biol Cell, 2005, 16(3): 1152~1164

44. Cao QP, Huang YS, Kan MC, Richter JD. Amyloid precursor proteins anchor CPEB to membranes and promote polyadenylation-induced translation. Mol Cell Biol, 2005, 25(24): 10930~10939

45. Ota R, Kotani T, Yamashita M. Possible involvement of Nemo-like kinase 1 in Xenopus oocyte maturation as a kinase responsible for Pumilio1, Pumilio2, and CPEB phosphorylation. Biochemistry, 2011, 50(25): 5648~5659

46. Kuo P, Runge E, Lu X, Hake LE. XGef influences XRINGO/CDK1 signaling and CPEB activation during Xenopus oocyte maturation. Differentiation, 2011, 81(2):133~140

47. Udagawa T, Swanger SA, Takeuchi K, Kim JH, Nalavadi V, Shin J, Lorenz LJ, Zukin RS, Bassell GJ, Richter JD. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell, 2012, 47(2): 253~266

48. Barkoff AF, Dickson KS, Gray NK, Wickens M. Translational control of cyclin B1 mRNA during meiotic maturation: Coordinated repression and cytoplasmic polyadenylation. Dev Biol, 2000, 220(1): 97~109

49. Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. A combinatorial code for CPE-mediated translational control. Cell, 2008, 132(3): 434~448

50. Thompson B, Wickens M, Kimble J. 19 translational control in development. Cold Spring Harbor Monograph Archive, 2007, 48: 507~544

51. Tay J, Hodgman R, Sarkissian M, Richter JD. Regulated CPEB phosphorylation during meiotic progression suggests a mechanism for temporal control of maternal mRNA translation. Genes Dev, 2003, 17(12): 1457~1462

52. Campisi J. Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell, 2005, 120(4): 513~522

53. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol, 2005, 37(5): 961~976

54. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell, 2006, 127(2): 265~275

55. Groppo R, Richter JD. CPEB control of NF-kappaB nuclear localization and interleukin-6 production mediates cellular senescence. Mol Cell Biol, 2011, 31(13): 2707~1714

56. Burns DM, Richter JD. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev, 2008, 22(24): 3449~3460

57. Caldeira J, Simoes-Correia J, Paredes J, Pinto MT, Sousa S, Corso G, Marrelli D, Roviello F, Pereira PS, Weil D, Oliveira C, Casares F, Seruca R. CPEB1, a novel gene silenced in gastric cancer: A Drosophila approach. Gut, 2012, 61(8): 1115~1123

58. Hansen CN, Ketabi Z, Rosenstierne MW, Palle C, Boesen HC, Norrild B. Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS, 2009, 117(1): 53~59

59. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 1996, 16(9): 4604~4613

60. Hagele S, Kuhn U, Boning M, Katschinshi DM. Cytoplasmic polyadenylation-element-binding protein (CPEB)1 and 2 bind to the HIF-1alpha mRNA 3'-UTR and modulate HIF-1alpha protein expression. Biochem J, 2009, 417(1): 235~246

61. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646~674

62. Burns DM, Richter JD. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev, 2008, 22(24): 3449~3460

63. Jones R, Thompson CB. Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes Dev, 2009, 23(5): 537~548

64. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab, 2008, 7(1): 11~20

65. Groisman I, Ivshina M, Marin V, Kennedy NJ, Davis RJ, Richter JD. Control of cellular senescence by CPEB. Genes Dev, 2006, 20(19): 2701~2712

66. Ortiz-Zapater E, Pineda D, Martinez-Bosch N, Fernandez-Miranda G, Iglesias M, Alameda F, Moreno M, Eliscovich C, Eyras E, Real FX, Mendez R, Navarro P. Key contribution of CPEB4-mediated translational control to cancer progression. Nature Med, 2012, 18(1): 83~90

67. Diaz VM, Planaguma J, Thomson TM, Reventos J, Paciucci R. Tissue plasminogen activator is required for the growth, invasion, and angiogenesis of pancreatic tumor cells. Gastroenterology, 2002, 122(3): 806~819

68. Glahder JA, Kristiansen K, Durand M, Vinther J, Norrild B. The early noncoding region of human papillomavirus type 16 is regulated by cytoplasmic polyadenylation factors. Virus Res, 2010, 149(2): 217~223

69. Huang YS, Richter JD. Regulation of local mRNA translation. Curr Opin Cell Biol, 2004, 16(3): 308~313

70. Huang YS, Carson JH, Barbarese E, Richter JD. Facilitation of dendritic mRNA transport by CPEB. Genes Dev, 2003, 17(5): 638~653

71. Huang YS, Jung MY, Sarkissian M, Richter JD. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J, 2002, 21(9):2139~2148

72. Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M. Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron, 2002, 36(3): 507~519

73. Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD. Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem, 2004, 11(3): 318~327

74. Zearfoss NR, Alarcon JM, Trifilieff P, Kandel E, Richter JD. A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. J Neurosci, 2008, 28(34): 8502~8509

75. Keleman K, Kruttner S, Alenius M, Dickson BJ. Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat Neurosci, 2007, 10(12): 1587~1593

76. Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K. Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell, 2012, 148(3): 515~529

77. Tompa P, Friedrich P. Prion proteins as memory molecules: An hypothesis. Neuroscience, 1998, 86(4): 1037

78. Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell, 140(3): 421~435

79. Kelly S, Yamamoto H, Robles LJ. Analysis of the 3' untranslated regions of α-tubulin and S-crystallin mRNA and the identification of CPEB in dark-and light-adapted octopus retinas. Mol Vis, 2008, 14(167-73): 1446~1455

80. Bava FA, Eliscovich C, Ferreira PG, Minana B, Ben-Dov C, Guigo R, Valcarcel J, Mendez R. CPEB1 coordinates alternative 3'-UTR formation with translational regulation. Nature, 2013, 495(7439): 121~125

81. Lin AC, Tan CL, Lin CL, Strochlic L, Huang YS, Richter JD, Holt CE. Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev, 2009, 4: 8