DOI: 10.3724/SP.J.1260.2013.30138

Aata Biophysica Sinica (生物物理学报) 2013/29:12 PP.925-936

The Mechanism of Oxidative Damage on the Dunaliella Salina under nTiO2 and nZnO

The effects of nTiO2 (median lethal dose, 50 mg/L) and nZnO (median lethal dose, 5 mg/L) on the ultrastructures, cellular activity, intracellular ROS and the expression of HSP70 and Mn-SOD of Dunaliella salina were studied. It revealed that these two nano-materials could enter into the cells, and made the starch grain and pyrenoid black, the thylakoid-membranes fractured, the mitochondrion swelling, the plasmalemma slacking, the nucleus and part of organelles generating apoptosis. FDA-PI double staining fluorescent images showed that, compared with the control group, the cellular activities of groups stressed by nTiO2 and nZnO for 6~36 h were significantly inhibited (P<0.05), and completely restored in groups which were stressed for 72 h. The corresponding fluorescence values of ROS were 45.31±12.79 and 64.27±0.93 when stressed by nTiO2 and nZnO for 48 h, respectively. The expression of genes HSP70 and Mn-SOD of the stressed groups increased obviously at 48 h (P<0.01) compared with the control group. It suggested that, the possible mechanism of oxidative damage of nZnO and nTiO2 to the Dunaliella salina is caused by the increase of ROS, which makes proteins denaturated, enzymes inactivated, genetic expressions blocked, organelles disintegrated and the nucleuses go into apoptosis etc. In addition, the adsorptivity of nTiO2 and nZnO may cause damage to cells. However, with the increasing of the adsorbate, the adsorbability would fall down, and at the same time, it can also lead to the decline of nano-material's light catalytic performance, thereby decreases the cellular toxic effectivity.

Key words:nTiO2,nZnO,Dunaliella Salina,Oxidative damage mechanism

ReleaseDate:2015-04-19 19:20:51

1. Service RF. Nanomaterials show signs of toxicity. Science, 2003, 30(11): 243

2. Brumfiel GA. Nanotechnology: A little knowledge. Nature,2003, 424(17): 246~248

3. Zhang WX. Environmental technologies at the nanoscale. Environ Sci Technol, 2003, 37(5): 103~108

4. Dowling AP. Development of nanotchnologies. Mater Today, 2004, 7(12): 30~35

5. 郭玉宝, 杨儒, 曹维良, 张敬畅. 甘氨酸在纳米碳管中的吸附及性质的分子模拟.化学物理学报, 2004, 17(4): 437~442 Guo YB, Yang R, Cao WL, Zhang JC. Molecular simulation study of adsorption and properties of glycine in carbon nanotubes. Chin J Chem Phys, 2004, 17(4):437~442

6. 朱小山, 朱林. 人工纳米材料生物效应研究进展. 安全与环境学报, 2005, 5(4): 86~90 Zhu XS, Zhu L. Review on biological effects of manufactured nano-materials. J Safe Environ, 2005, 5(4):86~90

7. 薛成斌.纳米二氧化钛透皮行为及紫外光诱导下致皮肤损伤的研究. 武汉: 华中科技大学, 2011 Xue CB. Skin penetration of nano-TiO2 and potential skin damag under UV irradiation. Wuhan: Huazhong University of Science and Technology, 2011

8. 尹平河, 黄凤, 赵玲. 载Fe3+纳米TiO2薄膜去除球形棕囊藻赤潮生物的研究. 热带海洋学报, 2010, 29(4): 102~106 Yin PH, Huang F, Zhao L. Study on visible photocatalysis removal of Phaeocystis globosa by use of Fe3+-doped Nano-TiO2 film. J Trop Oceanog, 2010, 29(4): 102~106

9. 任德香. 纳米材料生物安全性的研究进展. 沈阳: 东北师范大学, 2010 Ren DX. Development of the investigation on the bio-safety of nanomaterials. Shen yang: Northeast Normal University, 2010

10. 邓婷婷. 杜生盐氏藻锰超氧化物歧化酶(Mn-SOD)的基因克隆,表达与功能研究. 成都: 四川大学, 2007 Deng TT, Cloning, expression and characterization of the gene coding for the manganese superoxide dismutase in green alga Dunaliella salina. Chengdu: Sichuan University, 2007

11. 马明, 朱毅, 张宇, 张东生, 唐祖明, 张海黔, 顾宁. 四氧化三铁纳米粒子与癌细胞相互作用的初步研究. 东南大学学报(自然科学版), 2003, 33(2): 205~207 Ma M, Zhu Y, Zhang Y, Zhang DS, Tang ZM, Zhang HQ, Gu N. Preparation of magnetite nanoparticles and interaction with cancer cells. J Southeast Univ (Nat Sci Ed), 2003, 33(2): 205~207

12. 李杜, 何晓晓, 王柯敏, 何春梅.无机硅壳类纳米颗粒对细胞的毒性检测.湖南大学学报(自然科学版), 2002, 29(6): 1~6 Li D, He XX, Wang KM, He CM. Detecting on toxicity of series silica shell inorganic nanoparticles to cells. J Hunan Univ (Nat Sci), 2002, 29(6): 1~6

13. Kievit FM, Stephen ZR, Veiseh O, Arami H, Wang T, Lai VP, Park JO, Ellenbogen RG, Disis ML, Zhang M. Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. Am Chem Soc, 2012, 6(3):2591~601

14. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M. Targeting of porous hybrid silica nanoparticles to cancer cells. Am Chem So, 2009, 3(1):197~206

15. Thum KT, Brown EMB, Wu A, Vogt S, Lai B, Maser J, Paunesku T, Gayle E Woloschak GE. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett, 2007, 2(9): 430~441

16. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membrane by nonphagocytic mechanism in lungs and in cultured cells. Environ Health Perspect, 2005, 113(11): 1555~1560

17. 张宁. 人工纳米材料对藻类生物效应的研究. 天津: 天津理工大学, 2011 Zhang N. Biological effects of artificial nanomaterials on alga. Tianjin: Tianjin University of Technalogy, 2011

18. 曲秋莲. 4种纳米颗粒对人胃癌BGC-823细胞的生物学效应. 北京: 中国人民解放军军事医学科学院, 2009 Qu QL. Biological effects of four kinds of nanoparticles on human gastril carcinoma cell line BGC-823. Beijing: The Academy of Military Medical Sciences of the Chinese PLA, 2009

19. 姜伟. 七株盐藻的亲缘关系鉴定和生长特性比较. 青岛: 中国海洋大学, 2009 Jiang W. Evaluation of genetic relationship and comparation of growing of seven strains of Dunaliella Salina. Qingdao:Ocean University of China, 2009

20. 豆伟, 王梅芳, 郑娇, 余祥勇. 贝类精子质量检测与评价方法的研究Ⅲ:FDA-PI双荧光复染法检测马氏珠母贝精子的存活率. 广东海洋大学学报, 2012, 32(1): 59~63 Dou W, Wang MF, Zheng J, Yu XY. Sperms viability rate and membrane integrity of Pinctada martensii with a combination of FDA and PI. J Guangdong Ocean Univ,2012, 32(1): 59~63

21. 杜宝山, 张玉玲, 张兰英, 姚军.复合型微生物絮凝剂产生菌生长周期中参数变化. 吉林大学学报(理学版), 2007, 45(16):139~142 Du BS, Zhang YL, Zhang LY, Yao J. Parameter change in growth cycle of compound bioflocculant product bacterium. J Jilin Univ (Sci Ed), 2007, 45(16): 139~142

22. 张芳, 盛望, 王小利, 李泽琳. 葡萄糖对人脐带间充质干细胞生长与代谢的影响. 中国组织工程研究与临床康复, 2009, 13(1):21~24 Zhang F, Sheng W, Wang XL, Li ZL. Effects of glucose on growth and metabolism of human umbilical cord mesenchymal stem cells. J Clin Rehabil Tiss Eng Res,2009, 13(1): 21~24

23. Tian JY, Yu J. Changes in ultrastructure and responses of antioxidant systems of algae(Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation. J Photochem Photobiol B, 2009, 97: 152~160

24. 马淑英, 黄阳成, 杨小贺, 武维华. 高浓度钾对杜氏盐藻叶绿体超微结构的影响.植物学报, 1999, 41(12): 1342~1344 Ma SY, Huang YC, Yang XH, Wu WH. Effects of high K+ and alkaline pH on ultrastructure of Dunaliella salina chloroplasts. Acta Botan Sin, 1999, 41(12): 1342~1344

25. Guan M, Rawson DM, Zhang T. Cryopreservation of zebrafish (Daniorerio) oocytes using controlled slow cooling protocols. Cryobiology, 2008, 56(3): 204~208

26. Wang JX, Zhang XZ, Chen YS, Sommerfeld M, Qiang Hu. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere, 2008, 73(7): 1121~1128