DOI: 10.3724/SP.J.1008.2015.01339

Academic Journal of Second Military Medical University (第二军医大学学报) 2015/36:12 PP.1339-1343

MicroRNA and muscle atrophy: recent progress

MicroRNA (miRNA) is involved in the regulation of many genes at the post-transcriptional level and plays an important role in many physiological and pathological processes. More and more evidence suggests that muscle atrophy diseases are related to the regulation of miRNA, which indicting that miRNA may have a great potential to become biomarkers and drug targets for the treatment and diagnosis of the disease. This paper outlined the progress of miRNA in muscle atrophy, hoping to provide a theoretical basis for the prevention and treatment of muscle diseases.

Key words:microRNAs;atrophic muscular disorders;pathogenesis;therapeutics

ReleaseDate:2016-05-27 09:20:02

[1] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J].Cell, 2004, 116:281-297.

[2] Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Anthony A A, et al. Distinctive patterns of microRNA expression in primary muscular disorders[J].Proc Natl Acad Sci USA, 2007, 104:17016-17021.

[3] Greco S, De Simone M, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M, et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia[J]. FASEB J, 2009, 23: 3335-3346.

[4] Zaharieva I T, Calissano M, Scoto M, Preston M, Cirak S, Feng L, et al. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular dystrophy[J]. PLoS One, 2013, 8:e80263.

[5] Cacchiarelli D, Legnini I, Martone J, Cazzella V, D'Amico A, Bertini E, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy[J]. EMBO Mol Med, 2011, 3: 258-265.

[6] Gracia-Iguacel C, Gonzalez-Parra E, Perez-Gomez MV, Mahíllo L, Egido J, Ortiz A, et al. Prevalence of protein-energy wasting syndrome and its association with mortality in haemodialysis patients in a centre in Spain[J]. Nefrologia, 2013, 33:495-505.

[7] Wang X H, Hu Z, Klein J D, Zhang L, Fang F, Mitch W E. Decreased miR-29 suppresses myogenesis in CKD[J]. J Am Soc Nephrol, 2011, 22:2068-2076.

[8] Donaldson A, Natanek S A, Lewis A, Man W D, Hopkinson N S, Polkey M I, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD[J].Thorax, 2013, 68: 1140-1149.

[9] Lewis A, Riddoch-Contreras J, Natanek S A, Donaldson A, Man W D, Moxham J, et al. Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD[J].Thorax, 2012, 67:26-34.

[10] Chen G Q, Lian W J, Wang G M, Wang S, Yang Y Q, Zhao Z W. Altered microRNA expression in skeletal muscle results from high-fat diet-induced insulin resistance in mice[J].Mol Med Rep, 2012, 5:1362-1368.

[11] Allen D L, Bandstra E R, Harrison B C, Thorng S, Stodieck L S, Kostenuik P J, et al. Effects of spaceflight on murine skeletal muscle gene expression[J].J Appl Physiol (1985), 2009, 106: 582-595.

[12] Ringholm S, Biens R S, Kiilerich K, Guadalupe-Grau A, Aachmann-Andersen N J, Saltin B, et al. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle[J].Am J Physiol Endocrinol Metab, 2011, 301: E649-E658.

[13] Williams A H, Valdez G, Moresi V, Qi X, McAnally J, Elliott J L, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice[J].Science, 2009, 326:1549-1554.

[14] Ma J F, Hall D T, Gallouzi I E. The impact of mRNA turnover and translation on age-related muscle loss[J]. Ageing Res Rev, 2012, 11:432-441.

[15] Drummond M J, McCarthy J J, Sinha M, Spratt H M, Volpi E, Esser K A, et al. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis[J].Physiol Genomics, 2011, 43: 595-603.

[16] Hu Z, Klein J D, Mitch W E, Zhang L, Martinez I, Wang X H. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways[J].Aging, 2014, 6:160-175.

[17] Mitch W E. Malnutrition: a frequent misdiagnosis for hemodialysis patients[J]. J Clin Invest, 2002, 110: 437-439.

[18] Shen H, Liu T, Fu L, Zhao S, Fan B, Cao J, et al. Identification of microRNAs involved in dexamethasone-induced muscle atrophy[J].Mol Cell Biochem, 2013, 381(1-2):105-113.

[19] Thomas S S, Mitch W E. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin[J].Clin Exp Nephrol, 2013, 17:174-182.

[20] Wang X H, Du J, Klein J D, Bailey J L, Mitch W E. Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function[J].Kidney Int, 2009, 76:751-759.

[21] Hudson M B, Woodworth-Hobbs M E, Zheng B, Rahnert J A, Blount M A, Goochb J L, et al. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export[J].Am J Physiol Cell Physiol, 2014, 306:C551-C558.

[22] Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Zhen Y, et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy[J].J Biol Chem, 2011, 286: 38456-38465.

[23] Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Peterson Y, et al. Mitochondrial fission and remodelling contributes to muscle atrophy[J].EMBO J, 2010, 29: 1774-1785.

[24] Powers S K, Wiggs M P, Duarte J A, Zergeroglu A M, Demirel H A.Mitochondrial signaling contributes to disuse muscle atrophy[J].Am J Physiol Endocrinol Metab, 2012, 303:E31-E39.

[25] Wang H, Liu D, Cao P, Lecker S, Hu Z. Atrogin-1 affects muscle protein synthesis and degradation when energy metabolism is impaired by the antidiabetes drug berberine[J].Diabetes, 2010, 59:1879-1889.

[26] Alexander M S, Kawahara G, Motohashi N, Casar J C, Eisenberg I, Myers J A, et al.MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation[J].Cell Death Differ, 2013, 20:1194-1208.

[27] Snyder C M, Rice A L, Estrella N L, Held A, Kandarian S C, Naya F J. MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration[J].Development, 2013, 140:31-42.

[28] Cacchiarelli D, Incitti T, Martone J, Cesana M, Cazzella V, Santini T, et al. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dy strophy therapy[J].EMBO Rep, 2011, 12: 136-141.

[29] Liu N, Williams A H, Maxeiner J M, Bezprozvannaya S, Shelton J M, Richardsonet J A, et al. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice[J].J Clin Invest, 2012, 122: 2054-2065.

[30] Alexander M S, Casar J C, Motohashi N, Myers J A, Eisenberg I, Gonzalez R T, et al. Regulation of DMD pathology by an ankyrin-encoded miRNA[J].Skelet Muscle, 2011, 1:27.

[31] Reed S A, Sandesara P B, Senf S M, Judge A R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy[J]. FASEB J, 2012, 26:987-1000.

[32] Xu J, Li R, Workeneh B, Dong Y, Wang X, Hu Z. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486[J].Kidney Int, 2012, 82:401-411.

[33] Hamrick M W, Herberg S, Arounleut P, He H, Shiver A, Qi R, et al. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice[J].Biochem Biophys Res Commun, 2010, 400: 379-383.