DOI: 10.3724/SP.J.1006.2016.01437

Acta Agronomica Sinica (作物学报) 2016/42:10 PP.1437-1447

Mapping of QTLs for Bacterial Blight Resistance and Screening of Resistant Materials Using MAGIC Populations of Rice

Three genetically interconnected multi-parents advanced generation inter-cross (MAGIC) population, including two populations (DC1 and DC2) derived from four parents and one population from eight parents (DC3) were used to detect QTLs for resistance to two strains, a weak virulent C2 and a strong virulent GD-V of Xanthomonas oryzae pv. oryzae (Xoo) and to screen resistant breeding materials. Most parents were resistant to C2 and susceptible to GD-V. Transgressive segregations of lesion length for the two strains were observed in the three MAGIC populations and showed continuous distributions. A total of seven QTLs affecting lesion length of two strains were detected. Most QTLs showed quantitative resistance and obvious genetic background effect. Among the seven QTLs, QBbr11-1 and QBbr11-2 had less genetic background effect, which is valuable in rice breeding for dis-ease resistance. Eight resistant lines pyramiding different QTLs were screened from the three MAGIC populations, indicating the combination of qualitative resistance gene and quantitative resistance gene can significantly improve resistance level. The eight resistant breeding lines could be used as resistant donors in rice breeding for resistance. The results indicated that the MAGIC populations are ideal material for genetic study and marker-assisted breeding, showing a tight integration of genetic research and breeding application in rice.

Key words:Multi-parent Advanced Generation Inter-Crosses (MAGIC),Rice bacterial blight,Quantitative trait loci (QTL),Genome-wide association study (GWAS),Rice

ReleaseDate:2017-01-12 13:30:41

Yu L J, Zhang G L, Ding X W, Gao Y, Xie Y F. Progress in iden-tification and application of resistance genes to bacterial blight. Plant Physiol J, 2012, 48: 223-231 (in Chinese with English abstract)

[1] Mew T W. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25: 359-382

Luo L J, Mei H W, Zhao X H, Zhong D B, Wang Y P, Yu X Q, Ying C S. Mapping of resistance genes to bacterial blight of rice and their race specificity in rice. Chin Sci, 1998, 28: 536-541 (in Chinese)

[2] Chen S, Liu X, Zeng L, Ou-Yang D M, Yang J, Zhu X. Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv. oryzae. Theor Appl Genet, 2011, 122: 1331-1338

Zhang Q. Genetics and improvement of resistance to bacterial blight in hybrid rice in China. Chin J Rice Sci, 2009, 23: 111-119 (in Chinese with English abstract)

[3] Niño-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol, 2006, 7: 303-324

[4] 虞玲锦, 张国良, 丁秀文, 高雨, 谢寅峰. 水稻抗白叶枯病基因及其应用研究进展. 植物生理学报, 2012, 48: 223-231

Zheng C K, Wang C L, Yu Y J, Liang Y T, Zhao K J. Identification and molecular mapping of Xa32(t), a novel resistance gene for bac-terial blight (Xanthomonas oryzae pv. oryzae) in rice. Acta Agron Sin, 2009, 35: 1173-1180 (in Chinese with English abstract)

Guo S B, Zhang D P, Lin X H. Identification and mapping of a novel bacterial blight resistance gene Xa35(t) originated from oryza minuta. Sci Agric Sin, 2010, 43: 2611-2618 (in Chinese with English abstract)

[5] 罗利军, 梅捍卫, 赵新华, 钟代彬, 王一平, 余新桥, 应存山. 水稻白叶枯病抗性基因定位及其小种专化性. 中国科学, 1998, 28: 536-541

[6] Kim S M, Suh J P, Qin Y, Noh T H, Reinke R F, Jena K K. Identi-fication and fine-mapping of a new resistance gene, Xa40, con-ferring resistance to bacterial blight races in rice (Oryza sativa L.). Theor Appl Genet, 2015, 128: 1933-1943

Miao L L, Wang C L, Zheng C K, Che J Y, Gao Y, Wen Y C, Li G Q, Zhao K J. Molecular mapping of a new gene for resistance to rice bacterial blight. Sci Agric Sin, 2010, 43: 3051-3058 (in Chi-nese with English abstract)

Yang J, Sun Y, Cheng L R, Zhou Z, Wang Y, Zhu L H, Cang J, Xu J L, Li Z K. Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line popu-lations in rice. Acta Agron Sin, 2009, 35: 974-982 (in Chinese with English abstract)

[7] 章琦. 中国杂交水稻白叶枯病抗性的遗传改良. 中国水稻科学, 2009, 23: 111-119

Xu J L, Lin Y Z, Zhang B L, Weng J P. Study on utilization of Xa-21 gene resistant to bacterial blight in rice. Acta Agric Zhejianggensis, 1996, 8: 70-73 (in Chinese with English abstract)

[8] Khan M A, Naeem M, Iqbal M. Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur J Plant Pathol, 2014, 139: 27-37

[9] Person C, Samborski D J, Rohringer R. The gene-for-gene con-cept. Nature, 1962, 194: 561-562

Yu Y C, Teng S, Zeng D L, Dong G J, Qian Q, Huang D N, Zhu L H. Analysis of QTLs for resistance to rice bacterial bight. Chin J Rice Sci, 2003, 17: 315-318 (in Chinese with English abstract)

Zeng L X, Huang S H, Wu S Z. Resistance of IRBB21 (Xa21) to five races of bacterial blight in Guangdong. Acta Phytophyl Sin, 2002, 29: 97-100 (in Chinese)

[10] Ea V D B, Jones J D. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biolchem Sci, 1998, 23: 454-456

[11] Li Z K, Luo L J, Mei H W, Paterson A H, Zhao X H, Zhong D B, Wang Y P, Yu X Q, Zhu L, Tabien R, Stansel J W, Ying C S. A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet, 1999, 261: 58-63

[12] Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 2: 1-10

[13] Meng L J, Zhao X Q, Ponce K, Leung H, Ye G Y. QTL mapping for agronomic traits using multi-parent advanced generation in-ter-cross (MAGIC) populations derived from diverse elite indica rice lines. Field Crops Res, 2016, 189: 19-42

[14] Kauffman H E, Reddy A P K, Hsieh S P Y, Merca S D. Improved technique for evaluating resistance of rice varieties to Xantho-monas oryzae. Plant Dis Rep, 1973, 57: 537-541

[15] Bradbury P, Zhang Z, Kroon D, Casstevens T Y, Buckler E. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635

[16] Valdar W, Flint J, Mott R. Simulating the collaborative cross: Power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics, 2006, 172: 1783-1797

[17] Cavanagh C, Morell M, Mackay I, Powell W. From mutations to MAGIC, resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol, 2008, 11: 215-221

[18] Huang B E, Verbyla K L, Verbyla A P, Raghavan C, Singh V K, Gaur P, Leung H, Varshney R K, Cavanagh C R. MAGIC popula-tions in crops: current status and future prospects. Theor Appl Genet, 2015, 128: 999-1017

[19] Bandillo N, Raghavan C, Muyco P A, Sevilla M A L, Lobina I T, Dilla-Ermita C J, Tung C W, McCouch S, Thomson M, Mauleon R, Singh R K, Gregorio G, Redoña E, Leung H. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice, 2013, 6: 1-15

[20] Leung H, Raghavan C, Zhou B, Oliva R, Choi I R, Lacorte V, Jubay M L, Cruz C V, Gregorio G, Singh R K, Ulat V J, Borja F N, Mauleon R, Alexandrov N N, McNally K L, Hamilton R S. Allele mining and enhanced genetic recombination for rice breeding. Rice, 2015, 8: 1-11

[21] Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106: 683-687

[22] Wang C T, Tan M P, Xu X, Wen G S, Zhang D P, Lin X H. Lo-calizing the bacterial blight resistance gene, Xa22(t), to a 100-kilobase bacterial artificial chromosome. Phytopathology, 2003, 93: 1258-1262

[23] 郑崇珂, 王春连, 于元杰, 梁云涛, 赵开军. 水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位. 作物学报, 2009, 35: 1173-1180

[24] 郭嗣斌, 张端品, 林兴华. 小粒野生稻抗白叶枯病新基因的鉴定与初步定位. 中国农业科学, 2010, 43: 2611-2618

[25] 苗丽丽, 王春连, 郑崇珂, 车晋英, 高英, 温义昌, 李贵全, 赵开军. 水稻抗白叶枯病新基因的初步定位. 中国农业科学, 2010, 43: 3051-3058

[26] Xiang Y, Cao Y L, Xu C G, Li X H, Wang S P. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet, 2006, 113: 1347-1355

[27] Wang Y, Zhang Q, Zheng T Q, Cui Y R, Zhang W Z, Xu J L, Li Z K. Drought-tolerance QTLs commonly detected in two sets of re-ciprocal introgression lines in rice. Crop & Pasture Sci, 2014, 65: 171-184

[28] Wang Y, Zang J P, Sun Y, Ali J, Xu J L, Li Z K. Back-ground-independent quantitative trait loci for drought tolerance identified using advanced backcross introgression lines in rice. Crop Sci, 2013, 53: 430-441

[29] Cheng L R, Wang Y, Meng L J, Hu X, Cui Y R, Sun Y, Zhu L H, Ali J, Xu J L, Li Z K. Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal in-trogression lines in rice. Genome, 2012, 55: 45-55

[30] 杨静, 孙勇, 程立锐, 周政, 王韵, 朱苓华, 苍晶, 徐建龙, 黎志康. 利用双向导入系群体检测遗传背景对耐盐QTL定位的影响. 作物学报, 2009, 35: 974-982

[31] Banerjee D, Zhang X, Bent A F. The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance. Genetics, 2001, 158: 439-450

[32] 徐建龙, 林贻滋, 张炳林, 翁锦屏. 水稻白叶枯病抗性基因Xa-21的初步利用. 浙江农业学报, 1996, 8: 70-73

[33] Sun X L, Gao Y L, Yang Z F, Xu C G, Li X H, Wang S P, Zhang Q F. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527

[34] 于彦春, 滕胜, 曾大力, 董国军, 钱前, 黄大年, 朱立煌. 水稻抗白叶枯病微效QTL的定位分析. 中国水稻科学, 2003, 17: 315-318

[35] Wang C M, Su C C, Zhai H Q, Wan J M. Identification of QTLs underlying resistance to a virulent strain of Xanthomonas oryzae pv. oryzae in rice cultivar DV85. Field Crops Res, 2005, 91: 337-343

[36] Li Z K, Arif M, Zhong D B, Fu B Y, Domingo-Rey J, Ali J, Vijayakumar C H M, Yu S B, Khush G S. Complex genetic net-works underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103: 7994-7999

[37] Zhang F, Xie X W, Xu M R, Wang W S, Xu J L, Zhou Y L, Li Z K. Detecting major QTL associated with resistance to bacterial blight using a set of rice reciprocal introgression lines with high density SNP markers. Plant Breed, 2015, 134: 286-292

[38] Zhou Y L, Uzokwe V N E, Zhang C H, Cheng L R, Wang L, Chen K, Gao X Q, Sun Y, Chen J J, Zhu L H, Zhang Q, Ali J, Xu J L, Li Z K. Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Crop Protection, 2011, 30: 637-644

[39] Lee S W, Choi S H, Han S S, Lee D G, Lee B Y. Distribution of Xanthomonas oryzae pv. oryzae strains virulent to Xa21 in Korea. Phytopathology, 1999, 89: 928-933

[40] Shanti M L, George M L C, Cruz C M V, Bernardo M A, Nelson R J, Leung H,Reddy J N, Sridhar R. Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis, 2001, 85: 506-512

[41] 曾列先, 黄少华, 伍尚忠. IRBB21 (Xa21)对广东稻白叶枯病菌5个小种的抗性反应. 植物保护学报, 2002, 29: 97-100

[42] Gu K Y, Yang B, Tian D S, Wu L F, Wang D J, Sreekala C, Yang F, Chu Z Q, Wang G L, White F F, Yin Z C. R gene ex-pression induced by a type-III effector triggers disease resis-tance in rice. Nature, 2005, 435: 1122-1125