doi:

DOI: 10.3724/SP.J.1006.2017.01468

Acta Agronomica Sinica (作物学报) 2017/43:10 PP.1468-1479

Genome-wide Identification and Expression Analysis of SRO Genes Family in Gossypium hirsutum L.


Abstract:
RCD-ONE proteins family (SRO) is a kind of plant-specific proteins, which plays an important role in plants in response to different abiotic stress. In this study, 12 SRO genes were preliminary identified in Gossypium hirsutum L. standard line TM-1 by bioinformatics analysis. Multiple sequence alignment and phylogenetic tree analysis showed that these SROs contain PARP and RST domains, and could be divided into A, B, and C subfamilies. Transcriptome data analysis showed that in the whole genome of TM-1, Gh_D12G1442 advantageously expressed in the stem, Gh_D05G2064 in the sepals and stamens, Gh_A05G3788 advantage expression in stamens, Gh_A12G1318 in stamens and fiber, Gh_A12G2480, Gh_D12G2608, Gh_A05G2257, Gh_D05G2516 advantage expression in fiber; Gh_A08G1390, Gh_D08G1685, Gh_A12G2663, and Gh_D12G2054 in wider organs. In stress treatment showed that Gh_A08G1390 was obviously induced by cold and salt treatments, Gh_D12G2054, Gh_D08G1685, Gh_A12G2663 gene were induced try different stresses to a different degrees.

Key words:Upland cotton,Abiotic stress,SRO,Genomics

ReleaseDate:2017-12-07 14:03:26



[1] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science, 290:2105-2110

[2] Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors:structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10:79-87

[3] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY tran-scription factors. Trends Plant Sci, 2010, 15:247-258

[4] Yanagisawa S. Dof domain proteins:plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol, 2004, 45:386-391

[5] Jaspers P, Blomster T, Brosche M, Salojärvi J, Ahlfors R, Vainonen J P, Reddy R A, Immink R, Angenent G, Turck F, Overmyer K, Kangasjärvi J. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J, 2009, 60:268-279

[6] Belles-Boix E, Babiychuk E, Montagu M V, Kushnir S. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage 1. FEBS lett, 2000, 482:19-24

[7] Teotia S, Lamb R S. The paralogous genes RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. Plant Physiol, 2009, 151:180-198

[8] Ma L F, Zhang J M, Huang G Q, Zheng Y. Molecular characterization of cotton C-repeat/dehydration-responsive element binding factor genes that are involved in response to cold stress. Mol Biol Rep, 2014, 41:4369-4379

[9] Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C Jr H S, Kangasjärvi J. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell, 2000, 12:1849-1862

[10] Ahlfors R, Lång S, Overmyer K, Jaspers P, Brosché M, Tau-riainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inzé D, Palva T E, Kangasjärvia J. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell, 2004, 16:1925-1937

[11] Jaspers P, Blomster T, Brosché M, Salojärvi J, Ahlfors R, Vainonen J P, Reddy R A, Immink R, Angenent G, Turck F, Overmyer K, Kangasjärvi J. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J, 2009, 60:268-279

[12] Teotia S, Lamb R S. The paralogous genes RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. Plant Physiol, 2009, 151:180-198

[13] Ahlfors R, Brosché M, Kollist H, Kangasjärvi J. Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J, 2009, 58:1-12

[14] Borsani O, Zhu J H, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123:1279-1291

[15] Jaspers P, Overmyer K, Wrzaczek M, Vainonen J P, Blomster T, Salojärvi J, Reddy R A, Kangasjärvi J. The RST and PARP-like domain containing SRO protein family:analysis of protein structure, function and conservation in land plants. BMC Genom, 2010, 11:170

[16] You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot, 2013, 64:569-583

[17] Ahuja I, de Vos R C H, Bones A M, Hall R D. Plant molecular stress responses face climate change. Trends Plant Sci, 2010, 15:664-674

[18] Ahlfors R, Macioszek V, Rudd J, Brosché M, Schlichting R, Scheel D, Kangasjärvi J. Stress hormone-independent activation and nuclear translocation of mitogen:activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J, 2004, 40:512-522

[19] Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y C, Yama-moto K T. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol, 2004, 134:275-285

[20] Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X M, Huang A, Zhu J K. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103:18816-18821

[21] Wei J Z, Tirajoh A, Effendy J, Plant A L. Characterization of salt-induced changes in gene expression in tomato (Lycoper-sicon esculentum) roots and the role played by abscisic acid. Plant Sci, 2000, 159:135-148

[22] 马骏骏, 李菲, 柳展基, 刘任重, 王立国, 赵灿, 朱新霞. 棉花GhSRO04/GhSRO08基因的克隆及表达分析. 分子植物育种, 2015, 13:2196-2205 Ma J J, Li F, Liu Z J, Liu R Z, Wang L G. Zhao C, Zhu X X. Cloning and expression analysis of two SRO genes in Gos-sypium hirsutum L. Mol Plant Breed, 2015, 13:2196-2205

[23] 李月, 孙杰, 陈受宜, 谢宗铭. 棉花转录因子GhGT30基因的克隆及转录功能分析. 作物学报, 2013, 39:806-815 Li Y, Sun J, Chen S Y, Xie Z M. Cloning and transcription function analysis of cotton transcription factor GhGT30 gene. Acta Agron Sin, 2013, 39:806-815

[24] Deng X, Nie R, Li A, Nie R, Li A, Wei H X, Zheng S Z, Huang W B, Mo Y Q, Su Y R, Wang Q K, Li Y Q, Tang J X, Xu J B, Wong K Y. Ultra-low work function transparent electrodes achieved by naturally occurring biomaterials for organic optoelectronic devices. Adv Mater Interf, 2014, 1:1400215

[25] Webb C, Upadhyay A, Giuntini F, Eggleston I, Furutani-Seiki M, Ishima R, Bagby S. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway. Biochemistry, 2011, 50:3300-3309

[26] Aravind L. The WWE domain:a common interaction module in protein ubiquitination and ADP ribosylation. Trends Bio-chem Sci, 2001, 26:273-275

[27] Zweifel M E, Leahy D J, Barrick D. Structure and Notch re-ceptor binding of the tandem WWE domain of Deltex. Struc-ture, 2005, 13:1599-1611

[28] He F, Tsuda K, Takahashi M, Kuwasako K, Terada T, Shirouzu M, Watanabe S, Kigawa T, Kobayashi N, Güntert P, Yokoyama S. Structural insight into the interaction of ADP ribose with the PARP WWE domains. FEBS lett, 2012, 586:3858-3864

[29] Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang J Y, Liu K. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet, 2014, 46:567-572

[30] Potters G, Pasternak T P, Guisez Y, Jansen M K. Different stresses, similar morphogenic responses:integrating a plethora of pathways. Plant Cell Environ, 2009, 32:158-169