doi:

DOI: 10.3724/SP.J.1006.2018.00159

Acta Agronomica Sinica (作物学报) 2018/44:2 PP.159-168

Genetic Contribution of Lumai 14 to Qingnong 2 Revealed by SSR and SNP Markers


Abstract:
Lumai 14, a widely planted wheat variety, is the parents of more than 40 bread wheat varieties, among which Qingnong 2 (Lumai 14/Yannong 15//Aiganmai) has been released in recent years. In this study, the inheritance from Lumai 14 to Qingnong 2 was evaluated using 350 SSR markers and 26 026 SNPs detected by iSelect 90k SNP array. Pedigrees show that Lumai 14 and Yannong 15 contain 1/4 and 1/2 blood of Youbaomai, respectively. Genomic marker screening confirmed that Lumai 14 and Yannong 15 shared 55.42% common SSR loci and 71.53% common SNP loci. Polymorphic markers between them were used to disclose that Qingnong 2 inherited more SSR and SNP loci from Lumai 14 (54.11% and 72.55%, respectively) than from Yannong 15 (36.30% and 26.98%, respectively). In Qingnong 2, chromosomes 2B, 3B, and 6A harbored more than 50% SNPs from Yannong 15, whereas, the remaining 18 chromosomes carried more than 50% SNPs from Lumai 14. The parental genetic compositions were present mainly in large chromosomal segments in Qingnong 2. Phenotyping investigation in multi-locations across years indicated that Qingnong 2 was similar to Lumai 14 in length and width of flag leaf, length of first internode, length from flag leaf pulvinus to spike base, earing degree, thousand-grain weight, and grain length, and similar to Yanong 15 in plant height and growth duration. This results provide valuable information for molecular marker-assisted selection in wheat breeding.

Key words:founder parents,genetic contribution,genetic composition,SSR,90k array

ReleaseDate:2018-03-08 10:13:38



[1] 庄巧生. 中国小麦品种改良及系谱分析. 北京:中国农业出版社, 2003 Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing:China Agricultural Press, 2003(in Chinese)

[2] 盖红梅, 王兰芬, 游光霞, 郝晨阳, 董玉琛, 张学勇. 基于SSR标记的小麦骨干亲本育种重要性研究. 中国农业科学, 2009, 42:1503-1511 Ge H M, Wang L F, You G X, Hao C Y, Dong Y C, Zhang X Y. Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin, 2009, 42:1503-1511(in Chinese with English abstract)

[3] 亓佳佳, 韩芳, 马守才, 张莉莉, 余欣欣, 陈蕴文, 毕晓静, 史秀秀, 牛娜. 小麦骨干亲本小偃6号及其衍生品种(系)的遗传解析. 西北农林科技大学学报(自然科学版), 2015, 43:45-53 Qi J J, Han F, Ma S C, Zhang L L, Yu X X, Chen Y W, Bi X J, Shi X X, Niu N. Genetic dissection of wheat milestone parent Xiaoyan 6 and its derivatives. J Northwest A&F Univ (Nat Sci Edn), 2015, 43:45-53(in Chinese with English abstract)

[4] 于海霞, 肖静, 田纪春. 小麦骨干亲本矮孟牛及其衍生后代遗传解析. 中国农业科学, 2012, 45:199-207 Yu H X, Xiao J, Tian J C. Genetic dissection of milestone parent aimengniu and its derivatives. Sci Agric Sin, 2012, 45:199-207(in Chinese with English abstract)

[5] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本"周8425B"及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44:3919-3929 Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide asociation analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44:3919-3929(in Chinese with English abstract)

[6] Ge H M, You G X, Wang L F, Hao C Y, Dong Y C, Li Z S, Zhang X Y. Genome selection sweep and association analysis shed light on future breeding by design in wheat. Crop Sci, 2012, 52:1218-1228

[7] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本"胜利麦/燕大1817"杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35:1395-1404 Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross "Triumph/Yanda 1817" and its derivatives in wheat breeding program. Acta Agron Sin, 2009, 35:1395-1404(in Chinese with English abstract)

[8] 方正, 翟冬峰, 刘维正. 试论种质资源创新是小麦育种的前期工程. 小麦研究, 2016, 37(2):1-6 Fang Z, Zhai D F, Liu W Z. Discussion on the germplasm innovation as the per-breeding program in wheat breeding. J Wheat Res, 2016, 37(2):1-6(in Chinese with English abstract)

[9] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇. 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38:954-961 Ge H M, Li Y G, Wang R Y, Li Z Q, Gao J L, Zhang X Y. Genetic contribution of Lumai 14 to novel wheat varieties developed in Shandong province. Acta Agron Sin, 2012, 38:954-961(in Chinese with English abstract)

[10] 方正, 翟冬峰. 冬小麦杂交育种实践60年回顾. 山东农业科学, 2013, 45:114-118 Fang Z, Zhai D F. A review of winter wheat hybrid breeding in the past sixty years. Shandong Agric Sci, 2013, 45:114-118(in Chinese with English abstract)

[11] 刘兆晔, 于经川, 孙妮娜, 李林志. 骨干亲本鲁麦13、鲁麦14在山东小麦育种中的应用. 农业科技通讯, 2015, (1):87-90 Liu Z Y, Yu J C, Sun N N, Li L Z. The application of founder parents Lumai 13 and Lumai 14 in wheat breeding of Shandong province. Bull Agric Sci Tech, 2015, (1):87-90(in Chinese)

[12] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127:1309-1321

[13] 张学勇, 马琳, 郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43:157-170 Zhang X Y, Ma L, Zheng J. Characteristics of genes selected by domestication and intensive breeding in crop plants. Acta Agron Sin, 2017, 43:157-170(in Chinese with English abstract)

[14] Lai J S, Li R Q, Xun X, Jin W W, Xu M L, Zhao H N, Xiang Z K, Song W B, Ying K, Zheng M, Jiao Y P, Ni P X, Zhang J G, Li D, Guo X S, Ye K X, Jian M, Wang B, Zheng H S, Liang H Q, Zhang X Q, Wang S C, Chen S J, Li J S, Fu Y, Springer N M, Yang H M, Wang J, Dai J R, Schnable P S, Wang J. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet, 2010, 42:1027

[15] Zhou D, Chen W, Lin Z, Chen H D, Wang C R, Li H, Yu R B, Zhang F Y, Zhen G, Yi J L, Li K G, Liu Y G, Terzaghi W, Tang X Y, He H, Zhou S C, Deng X W. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding. Plant Biotechnol J, 2016, 14:638-648

[16] 张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析:发掘重要基因的新思路. 中国农业科学, 2006, 39:1526-1535 Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping:a new approach for discovering agronomic important genes. Sci Agric Sin, 2006, 39:1526-1535(in Chinese with English abstract)

[17] 李小军, 胡铁柱, 李淦, 姜小苓, 冯素伟, 董娜, 张自阳, 茹振钢, 黄勇. 小麦品种百农AK58及其姊妹系的遗传构成分析. 作物学报, 2012, 38:436-446 Li X J, Hu T Z, Li J, Jiang X L, Feng S W, Dong N, Zhang Z Y, Ru Z G, Huang Y. Genetic analysis of broad-grown wheat cultivar Bainong AK58 and its sib lines. Acta Agron Sin, 2012, 38:436-446(in Chinese with English abstract)

[18] 邹少奎, 殷贵鸿, 唐建卫, 韩玉林, 李楠楠, 李顺成, 黄峰, 王丽娜, 张倩, 高艳. 小麦新品种周麦23号的遗传构成分析及其特异引物筛选. 中国农业科学, 2015, 48:3941-3951 Zou S K, Yin G H, Tang W J, Han Y L, Li N N, Li S C, Huang F, Wang L N, Zhang Q, Gao Y. Genetic analysis of new wheat variety Zhoumai 23 and screening of specific primers. Sci Agric Sin, 2015, 48:3941-3951(in Chinese with English abstract)

[19] Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet, 2014, 128:353-363

[20] Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F, Li D, Pan S K, Zheng F Y, Hu Q, Xia X C, Li J W, Liang Q S, Chen J, Wicker T, Gou C Y, Kuang H H, He G Y, Luo Y D, Keller B, Xia Q J, Lu P, Wang J Y, Zou H F, Zhang R Z, Xu J Y, Gao J L, Middleton C, Quan Z W, Liu G M, Wang J, International Wheat Genome Sequencing Consortium, Yang H M, Liu X, He Z H, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496:91-95

[21] Ling H Q, Zhao S C, Liu D C, Wang J Y, Sun H, Zhang C, Fan H J, Li D, Dong L L, Tao Y, Gao C, Wu H L, Li Y W, Cui Y, Guo X S, Zheng S S, Wang B, Yu K, Liang Q S, Yang W L, Lou X Y, Chen J, Feng M J, Jian J B, Zhang X F, Luo G B, Jiang Y, Liu J J, Wang Z B, Shan Y H, Zhang B R, Wu H J, Tang D Z, Shen Q H, Xue P Y, Zou S H, Wang X J, Liu X, Wang F M, Yang Y P, An X L, Dong Z Y, Zhang K P, Zhang X Q, Luo M C, Dvorak J, Tong Y P, Wang J, Yang H M, Li Z S, Wang D W, Zhang A M, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496:87-90

[22] Luo M C, Yong Q G, Frank M Y. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA, 2013, 110:7940-7945

[23] Cavanagh C R, Chao S, Wang S C Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G H, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Silva S L D, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110:8057-8062

[24] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Morten Lillemo, Mather D, Appels R, Dolferus R, Brown-Guedira G, Koral A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch L, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12:787

[25] Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M C, Dubcovsky J. Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 2009, 23:23-33

[26] Chao S J, Dubcovsky J, Dvorak, Luo M C, Baenziger S P, Matnyazov R, Clark D R, Talbert L E, Anderson J A, Dreisigacker S, Glover K, Chen J L, Campbell K, Bruckner P L, Rudd J C, Haley S, Carver B F, Perry S, Sorrells M E, Akhunov E D. Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics, 2010, 11:727

[27] 陈建省, 陈广凤, 李青芳, 张晗, 师翠兰, 孙彩铃, 邓志英, 刘凯, 谷植群, 田纪春. 利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析. 中国农业科学, 2014, 47:4769-4779 Chen J S, Chen G F, Li Q F, Zhang H, Shi C L, Sun C L, Deng Z Y, Liu K, Gu Z Q, Tian J C. Construction of genetic map using genotyping chips and QTL analysis of grain weight. Sci Agric Sin, 2014, 47:4769-4779(in Chinese with English abstract)

[28] Gao F M, Liu J D, Yang L, Wu X X, Xiao Y G, Xia X C, He Z H. Genome-wide linkage mapping of QTL for physiological traits in a Chinese wheat population using the 90K SNP array. Euphytica, 2016, 209:789-804

[29] 高尚, 莫洪君, 石浩然, 王智强, 林宇, 武方琨, 邓梅, 刘亚西, 魏育明, 郑有良. 利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析. 应用与环境生物学报, 2016, 22:85-94 Gao S, Mo H J, Shi H R, Wang Z Q, Lin Y, Wu F K, Deng M, Liu Y X, Wei Y M, Zheng Y L. Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology. Chin J Appl Environ Biol, 2016, 22:85-94(in Chinese with English abstract)

[30] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42:820-831 Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J S. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42:820-831(in Chinese with English abstract)

[31] Ain Q U, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X C, He Z H, Quraishi U M. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Frontiers in Plant Sci, 2015, 31:743

[32] Hao C, Wang Y, Chao S, Li T, Liu H X, Wang L F, Zhang X Y. The iSelect 90K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep, 2017, 7:41247

[33] 方正, 刘维正, 杨今胜, 翟冬峰, 刘为更. 从鲁麦14号的育成论小麦种质资源改良策略. 麦类作物学报, 2005, 25:121-124 Fang Z, Liu W Z, Yang J S, Zhai D F, Liu W G. Strategy to improve wheat germplasm resource in view of the breeding of Lumai 14. J Triticeae Crops, 2005, 25:121-124(in Chinese with English abstract)

[34] Van Inghelandt D, Melchinger A E, Lebreton C, Stich B. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet, 2010, 120:1289-1299

[35] Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater J M, Zyprian E, Moreira F M, Grando M S. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol, 2013, 13:39

[36] Fischer M C, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu K K, Holderegger R, Widmer A. Estimating genomic diversity and population differentiation:an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics, 2017, 18:69

[37] 张利莎, 董国清, 扎桑, 卓嘎, 王德良, 谷方红, 袁兴淼, 张京, 郭刚刚. 基于EST-SSR和SNP标记的大麦麦芽纯度检测. 作物学报, 2015, 41:1147-1154 Zhang L S, Dong G Q, Zha S, Zhuo G, Wang D L, Gu F H, Yuan X M, Zhang J, Guo G G. EST-SSR and SNP markers based barley malt purity detection. Acta Agron Sin, 2015, 41:1147-1154(in Chinese with English abstract)

[38] Würschum T, Langer S M, Longin C F H, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet, 2013, 126:1477-1486