DOI: 10.3724/SP.J.1006.2018.00208

Acta Agronomica Sinica (作物学报) 2018/44:2 PP.208-217

Regeneration Capacity Evaluation of Some Largely Popularized Wheat Varieties in China

Strong genotype dependence exists in wheat doubling haploid and genetic engineering breeding, in which high regeneration ability is a main restrain. In this study, we evaluated the regeneration abilities of various explants of 24 commercial popularized wheat varieties and a new breeding line (CB037) with high powdery mildew resistance. The explants used in the two-year experiment were anther, immature embryo, and mature embryo. The regeneration potential was assessed based on callus induction rate, callus differentiation rate, and shoot induction rate. The plantlet regeneration rates of the all genotypes tested were 0-41.75% for anther culture, 2.25%-531.92% for immature embryo culture, and 3.24%-84.34% for mature embryo culture, showing significant differences among genotypes. Generally, immature embryos had stronger regeneration ability (119.79%) than mature embryos (36.23%) and anthers (4.91%). Among all the used genotypes, CB037 showed the highest regeneration rates for the three explant types. Lunxuan 987, Yangmai 16, Neimai 836, Kenong 199, Xinchun 6, Zhengmai 366, Zhengmai 9023, Xindong 20, Yannong 19, and Chuanmai 42 exhibited ideal regeneration abilities in immature embryo culture; Xinchun 6, Jingdong 8, Shimai 4185, Kenong 199, and Luanxun 987 performed good in mature embryo culture; and Shimai 4185 and Han 6172 were characterized with high regeneration rate of green plantlet in anther culture. Plant regeneration efficiency of wheat was closely associated with genotype and explant type. The same explant type from different genotypes showed significantly different regeneration abilities, and different explants of the same genotype showed different regeneration abilities. However, there was no correlation among regeneration abilities of the three types of explants. The selected genotypes with high regeneration potential are recommended for application in genetic and cell engineering breeding of wheat.

Key words:wheat,anther,immature embryo,mature embryo,tissue culture

ReleaseDate:2018-03-08 10:13:39

[1] 叶兴国, 徐惠君, 杜丽璞, 何光源, 王轲, 林志珊. 小麦规模化转基因技术体系构建及其应用. 中国农业科学, 2014, 47:4155-4171 Ye X G. Xu H J, Du L P, He G Y, Wang K, Lin Z S. Establishment and application of large-scale transformation systems in wheat. Sci Agric Sin, 2014, 47:4155-4171(in Chinese with English abstract)

[2] 韩晓峰, 陶丽莉, 殷桂香, 刘晓蕾, 杜丽璞, 魏亦勤, 晏月明, 叶兴国. 基因型和环境条件对小麦花药培养效果的影响. 作物学报, 2010, 36:1209-1215 Han X F, Tao L L, Yin G X, Liu X L, Du L P, Wei Y Q, Yan Y M, Ye X G. Effect of genotype and growing environment on anther culture in wheat. Acta Agron Sin, 2010, 36:1209-1215(in Chinese with English abstract)

[3] She M Y, Yin G X, Li J R, Li X, Du L P, Ma W J, Ye X G. Efficient Regeneration potential is closely related to auxin exposure time and catalase metabolism during the somatic embryogenesis of immature embryos in Triticum aestivum L. Mol Biotechnol, 2013, 54:451-460

[4] Mathias R J, Fukui K, Law C. Cytoplasmic effects on the tissue culture response of wheat (Triticum aestivum) callus. Theor Appl Genet, 1986, 72:70-75

[5] He D, Yang Y, Scott K. A comparison of scutellum callus and epiblast callus induction in wheat:the effect of genotype, embryo age and medium. Plant Sci, 1988, 57:225-233

[6] Stober A, Hessu D. Spike pretreatments, anther culture conditions, and anther culture response of 17 German varieties of spring wheat (Triticum aestivum L.). Plant Breed, 1997, 116:443-447

[7] Mendoza M G, Kaeppler H F. Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev-Pl, 2002, 38:39-45

[8] Varshney A, Altpeter F. Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Mol Breed, 2002, 8:295-309

[9] Turhan H, Baser I. Callus induction from mature embryo of winter wheat (Triticum aestivum L.). Asian J Plant Sci, 2004, 3:17-19

[10] Sharma V, Hänsch R, Mendel R, Schulze J. Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long-term retention of morphogenecity using meristematic shoot segments. Plant Breed, 2005, 124:242-246

[11] 叶兴国, 徐惠君, 徐琼芳, 杜丽璞, 李志武. 小麦花药培养力的基因型差异和配合力分析. 中国农业科学, 1997, 30(6):49-54 Ye X G, Xu H J, Xu Q F, Du L P, Li Z W. Genetic analysis and combining ability evaluation of the anther culture response in common wheat. Sci Agric Sin, 1997, 30(6):49-54(in Chinese with English abstract)

[12] Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T. Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell, Tiss Org, 1998, 53:67-74

[13] Shah M, Khalid Q, Khan U, Shah S, Shah S, Hassan A, Pervez A, Oliveira V, Caxito F, Gomes K. Variation in genotypic responses and biochemical analysis of callus induction in cultivated wheat. Genet Mol Res, 2009, 8:783-793

[14] Yin G X, Wang Y L, She M Y, Du L P, Xu H J, Ma J X, Ye X G. Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agric Sci China, 2011, 10:9-17

[15] Zamani I, Gouli Vavdinoudi E, Kovacs G, Xynias I, Roupakias D, Barnabas B. Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1hybrids. Plant Breed, 2003, 122:314-317

[16] Ozias A P, Vasil I K. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat):evidence for somatic embryogenesis. Protoplasma, 1982, 110:95-105

[17] Bi R M, Kou M, Chen L G, Mao S R, Wang H G. Plant regeneration through callus initiation from mature embryo of Triticum. Plant Breed, 2007, 126:9-12

[18] Arzani A, Mirodjagh S S. Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell, Tiss Org, 1999, 58:67-72

[19] Szakács E, Kovács G, Pauk J, Barnabás b. Substitution analysis of callus induction and plant regeneration from anther culture in wheat (Triticum aestivum L.). Plant Cell Rep, 1988, 7:127-129

[20] Liu W G, Zheng M Y, Enrique A P, Calvin F K. Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci, 2002, 42:686-692

[21] Tuvesson I K D, Pedersen S, Andersen S B. Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor Appl Genet, 1989, 78:879-883

[22] Buyser D J, Hachemi-Rachedi S, Lemee M L, Sejourne S, Marcotte J J, Henry Y. Aneuploid analysis of anther culture response in wheat. Plant Breed, 1992, 109:339-342

[23] Jia H Y, Yu J, Yi D L, Cheng Y, Xu W Q, Zhang L X, Ma Z Q. Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell, Tiss Org, 2009, 97:159-165

[24] Jia H Y, Yi D L, Yu J, Xue S L, Xiang Y, Zhang C Q, Zhang Z Z, Zhang L, Ma Z Q. Mapping QTLs for tissue culture response of mature wheat embryos. Mol Cells, 2007, 23:323-330

[25] Pellegrineschi A, Noguera L M, Skovmand B, Brito R M, Velazquez L, Salgado M M, Hernandez R, Warburton M L, Hoisington D A. Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome, 2002, 45:421-430

[26] Khanna H, Daggard G. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep, 2003, 21:429-436

[27] Greer M S, Kovalchuk I, Eudes F. Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. New Biotechnol, 2009, 26:44-52

[28] Ishida Y, Tsunashima M, Hiei Y, Komari T. Wheat (Triticum aestivum L.) transformation using immature embryos. In:Agrobacterium Protocols:Volume 1. Methods in Molecular Biology vol. 1223, (Wang K ed) New York:Springer Science+ Business Media, 2015. pp 189-198

[29] Zhou H, Berg J D, Blank S E, Chay C A, Chen G, Eskelsen S R, Fry J E, Hoi S, Hu T, Isakson P J, Lawton M B, Metz S G, Rempel C B, Ryerson D K, Sansone A P, Shook A L, Starke R J, Tichota J M, Valenti S A. Field efficacy assessment of transgenic roundup ready wheat. Crop Sci, 2003, 43:1072-1075

[30] Stokstad E. Biotechnology-Monsanto pulls the plug on genetically modified wheat. Science, 2004, 304:1088-1089

[31] 叶兴国, 徐惠君, 赵乐莲, 杜丽璞. 组织培养途径改良定型小麦品种的研究. 作物学报, 1998, 24:310-314 Ye X G, Xu H J, Zhao L L, Du L P. Studies on improving wheat cultivars by tissue culture. Acta Agron Sin, 1998, 24:310-314(in Chinese with English abstract)

[32] 叶兴国, 徐惠君, 杜丽璞, 辛志勇. 小麦遗传转化几个因素的研究. 中国农业科学, 2001, 34:128-132 Ye X G, Xu H J, Du L P, Xin Z Y. Studies on the factors influencing the efficiency of wheat transformation. Sci Agric Sin, 2001, 34:128-132(in Chinese with English abstract)

[33] Zhang W, Wang X M, Fan R, Yin G X, Wang K, Du L P, Xiao L L, Ye X G. Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos. J Integr Agric, 2015, 14:11-19

[34] 叶兴国, 佘茂云, 王轲, 杜丽璞, 徐惠君. 植物组织培养再生相关基因鉴定、克隆和应用研究进展. 作物学报, 2012, 38:191-201 Ye X G, She M Y, Wang K, Du L P, Xu H J. Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agron Sin, 2012, 38:191-201(in Chinese with English abstract)

[35] Wang X M, Wang K, Li J R, Du L P, Li J R, Xu H J, Ye X G. Effects of environmental temperature on the regeneration frequency of the immature embryos of wheat (Triticum aestivum L.). J Integr Agric, 2014, 13:722-732

[36] Chauhan H, Khurana P. Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J, 2011, 9:408-417

[37] Wang Y L, Xu M X, Yin G X, Tao L L, Wang D W, Ye X G. Transgenic wheat plants derived from Agrobacterium-mediated transformation of mature embryo tissues. Cereal Res Commun, 2009, 37:1-12

[38] Li J R, Ye X G, An B Y, Du L P, Xu H J. Genetic transformation of wheat:current status and future prospects. Plant Biotechnol Rep, 2012, 6:183-193

[39] Tao L L, Yin G X, Du L P, Shi Z Y, She M Y, Xu H J, Ye X G. Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agric Sci China, 2011, 10:317-326

[40] Richardson T, Thistleton J, Higgins T J, Howitt C, Ayliffe M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tiss Organ, 2014, 119:647-659

[41] Wang K, Liu H Y, Du L P, Ye X G. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J, 2017, 15:614-623

[42] 张云龙, 王美蛟, 张悦, 褚翠萍, 林志珊, 徐琼芳, 叶兴国, 陈孝, 张宪省. 不同簇毛麦6VS染色体臂的白粉病抗性特异功能标记的开发及应用. 作物学报, 2012, 38:1827-1832 Zhang Y L, Wang M J, Zhang Y, Chu C P, Lin Z S, Xu Q F, Ye X G, Chen X, Zhang X S. Development and application of functional markers specific to powdery mildew resistance on chromosome arm 6VS from different origins of Haynaldia villosa. Acta Agron Sin, 2012, 38:1827-1832(in Chinese with English abstract)