doi:

DOI: 10.3724/SP.J.1006.2018.00218

Acta Agronomica Sinica (作物学报) 2018/44:2 PP.218-226

Cloning and Expression Analysis of Galactosyltransferase Gene GhGalT1 Promoter in Cotton


Abstract:
Glycosytransferases (GTs) transfer an activated sugar donor to a specific acceptor to form glucosidic bond, which are regulated by various abiotic and biotic stresses, and may play a role in plant responses to changes in living conditions. In this study, a 539 bp fragment of GhGalT1 5'-flanking sequence was isolated from upland cotton Coker 312 by PCR, designated pGhGalT1. Analysis of pGhGalT1 sequence by PlantCARE revealed it contained not only putative CAAT box, TATA box sequence, but also MBS, HSE, TC-rich repeats, MYCCONSE and CGTCA-motif cis-acting element which involved in drought, heat, dehydration, defense and stress responsiveness. Thus, we constructed it into pBI101-GUS vector and formed pGhGalT1::GUS fusion expression vector (pBI101-pGhGalT1-GUS), then transferred the vector into Arabidopsis by the Agrobacterium-mediated floral dip method, and successfully obtained positive transgenic plants by screening test of resistance to kanamycin and PCR detection. Histochemical assay of T3 generation of transgenic Arabidopsis revealed that GUS activities were mainly accumulated in root tips of primary and lateral roots in 5-to 15-day-old seedlings, and less strongly in cotyledons and rosette leaves. The histochemical staining results and the assay of quantitative GUS activity and GUS gene expression under abiotic stresses and hormone treatments revealed that the GhGalT1 promoter was salt-/osmotic-/6-BA-/MeJA-/BL-inducible. These findings contribute to the selection of a suitable promoter for crop molecular improvement.

Key words:cotton (Gossypium hirsutum L.),glycosytransferase,promoter,cis-acting element,GUS histochemical staining,quantitative GUS assay

ReleaseDate:2018-03-08 10:13:39



[1] Campbell J A, Davies G J, Bulone V V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J, 1997, 326:929-939

[2] Lao J, Oikawa A, Bromley J R, McInerney P, Suttangkakul A, Smith-Moritz A M, Plahar H, Chiu T Y, Gonzalez Fernandez-Nino S M, Ebert B, Yang F, Christiansen K M, Hansen S F, Stonebloom S, Adams P D, Ronald P C, Hillson N J, Hadi M Z, Vega-Sanchez M E, Loque D, Scheller H V, Heazlewood J L. The plant glycosyltransferase clone collection for functional genomics. Plant J, 2014, 79:517-529

[3] Coutinho P M, Deleury E, Davies G J, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 2003, 328:307-317

[4] Jackson R G, Kowalczyk M, Li Y, Higgins G, Ross J, Saiidberg G, Bowles D J. Overexpression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid:phenotypic characterisation of transgenic lines. Plant J, 2002, 32:573-583

[5] Jackson R Q, Lim E K, Li Y, Kowalczyk M, Saiidberg G, Hoggett J, Ashford D A, Bowles D J. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem, 2001, 276:4350-4356

[6] Tognetti V B, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs K A, Inze D, Van-Breusegem F. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell, 2010, 22:2660-2679

[7] Martin R C, Mok D W, Sniels R, Van Oiickelen H A, Mok M C. Development of transgenic tobacco harboring a zeatin O-glucosyltransferase gene from Phaseolus. In Vitro Cell Dev Biol Plant, 2001, 37:354-360

[8] Wang J, Ma X M, Kojima M, Sakakibara H, Hou B K. N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol, 2011, 52:2200-2213

[9] Wang J, Ma X M, Kojima M, Sakakibara H, Hon B K. Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thahana. Plant Physiol Biochem, 2013, 65:9-16

[10] Poppenberger B, Fujioka S, Soeno K, George G L, Vaistij F E, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D J. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA, 2005, 102:15253-15258

[11] Suzuki H, Fujioka S, Takatsuto S, Yokota T, Murofushi N, Sakurai A. Biosynthesis of brassinolide from teasterone via typhasterol and castaserone in cultured cells of Catharanthus roseus. J Plant Growth Regul, 1993, 13:21-26

[12] Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins G S, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij F E, Bowles D, Poppenberger B. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol, 2011, 11:51

[13] Glauser G, Boccard J, Rudaz S, Wolfender J L. Mass spectrometry-based metabolomics oriented by correlation analysis for wound-induced molecule discovery:identification of a novel jasmonate glucoside. Phytochem Anal, 2010, 21:95-101

[14] Lim C E, Ahn J H, Lim J. Molecular genetic analysis of tandemly located glycosyltransferase genes, UGT73BI, UGT73B2, and UG17383, in Arabidopsis thaliana. J Plant Biol, 2006, 49:309-314

[15] Lim C E, Choi N J, Kim A, Lee S A, Huang Y S, Lee C H, Lim J. Improved resistance to oxidative stress by a loss-of-function mutation in the Arabidopsis UGT71C1 gene. Mol Cells, 2008, 25:368-375

[16] Kim A, Heo J O, Chang K S, Lee S A, Lee M H, Lim C E, Lim J. Overexpression and inactivation of UGT73B2 modulate tolerance to oxidative stress in Arabidopsis. J Plant Biol, 2010, 53:233-239

[17] Song J T, Koo Y J, Seo H S, Kim M C, Choi Y D, Kim J H. Overexpression of AtSGTl, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae. Phytochemistry, 2008, 69:1128-1134

[18] 李田, 孙景宽, 刘京涛. 植物启动子研究进展. 生物技术通报, 2015, 31(2):18-25 Li T, Sun J K, Liu J T. Research advances on plant promoter. Biotechnol Bull, 2015, 31(2):18-25(in Chinese with English abstract)

[19] Li F, Han Y Y, Feng Y N, Xing S C, Zhao M R, Chen Y H, Wang W. Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development. J Biotechnol, 2013, 163:281-291

[20] Pino M T, Skinner J S, Park E J, Jeknic Z, Hayes P M, Thomashow M F, Chen T H. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J, 2007, 5:591-604

[21] Qin L X, Rao Y, Li L, Huang J F, Xu W L, Li X B. Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS One, 2013, 8:e59115

[22] Li X B, Lin C, Cheng N H, Liu J W. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fibers. Plant Physiol, 2002, 130:666-674

[23] Clough S J, Bent A F. Floral dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16:735-743

[24] Qin L X, Li Y, Li D D, Xu W L, Zheng Y, Li X B. Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses. Plant Mol Biol, 2014, 86:609-625

[25] Jefferson R A. Assaying chimeric genes in plants:the Gus gene fusion system. Plant Mol Biol Rep, 1987, 5:387-405

[26] Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton Actin1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17:859-875

[27] Wang X, Tan Y P, Zhou J, Wang C T, Liu X Q. Expression of a tobacco glycosyltransferase gene driving promoter in transgenic tobacco. Agric Sci Technol, 2010, 11:83-85

[28] Luo K, Zhang G, Deng W, Luo F, Qiu K, Pei Y. Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco. Plant Cell Rep, 2008, 27:707-717

[29] Singh H, Sen R, Baltimore D, Sharp P A. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature, 1986, 319:154-158

[30] Li J J, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science, 1993, 262:1870-1874

[31] 贾笑英, 向云, 张金文, 王蒂. 马铃薯损伤诱导型启动子Wun1基因的克隆及其GFP表达活性. 分子植物育种, 2006, 4:333-338 Jia X Y, Xiang Y, Zhang J W, Wang D. Cloning of potato wound-inducible promoter Wun1 and its GFP express activity. Mol Plant Breed, 2006, 4:333-338(in Chinese with English abstract)

[32] 周潇, 姜航, 屈汉金, 邓子牛, Gentile A, 龙桂友. 柑橘冷诱导基因及其启动子表达载体构建与瞬时表达分析. 果树学报, 2015, 32:353-358 Zhou X, Jiang H, Qu H J, Deng Z N, Gentile A, Long G Y. Construction of plant vectors with promoter and cold-induced genes in citrus and transient expression verification. J Fruit Sci, 2015, 32:353-358(in Chinese with English abstract)

[33] 魏桂民, 张金文, 王蒂, 张俊莲, 陆艳梅, 高宜峰. 马铃薯Sgt1基因启动子的结构及功能分析. 中国生物化学与分子生物学报, 2013, 29:969-977 Wei G M, Zhang J W, Wang D, Zhang J L, Lu Y M, Gao Y F. Promoter analysis of potato Sgt1 gene. J Biochem Mol Biol, 2013, 29:969-977(in Chinese with English abstract)

[34] 郭新勇, 程晨, 张选, 祝建波. 拟南芥冷诱导型启动子CBF3驱动IPT基因在烟草中的表达. 西北农业学报, 2012, 21:123-131 Guo X Y, Cheng C, Zhang X, Zhu J B. Expression of IPT gene linked with cold-induced promoter CBF3 from Arabidopsis thaliana in tobacco. Acta Agric Boreali-Occident Sin, 2012, 21:123-131(in Chinese with English abstract)

[35] 杨春霞, 陈英, 黄敏仁, 李火根. 拟南芥逆境诱导型启动子rd29A的克隆及活性检测. 南京林业大学学报(自然科学版), 2008, 32:6-10 Yang C X, Chen Y, Huang M R, Li H G. Cloning of stress-inducible promoter rd29A from Arabidopsis thaliana and its activity detection in transgenic tobacco. J Nanjing For Univ (Nat Sci Edn), 2008, 32:6-10(in Chinese with English abstract)

[36] 杜皓, 丁林云, 何曼林, 蔡彩平, 郭旺珍. 受多逆境诱导表达的GhWRKY64基因启动子克隆与功能分析. 作物学报, 2015, 41:593-600 Du H, Ding L Y, He M L, Cai C P, Guo W Z. Cloning and functional identification of promoter region of GhWRKY64 induced by multi-stresses in cotton (Gossypium hirsutum). Acta Agron Sin, 2015, 41:593-600(in Chinese with English abstract)

[37] 扆珩, 李昂, 刘惠民, 景蕊莲. 小麦蛋白磷酸酶2A基因TaPP2AbB″-α启动子的克隆及表达分析. 作物学报, 2016, 42:1282-1290 Yi H, Li A, Liu H M, Jing R L. Cloning and expression analysis of protein phosphatase 2A gene TaPP2AbB″-α promoter in wheat. Acta Agron Sin, 2016, 42:1282-1290(in Chinese with English abstract)