doi:

DOI: 10.3724/SP.J.1006.2018.00197

Acta Agronomica Sinica (作物学报) 2018/44:2 PP.197-207

Genome-wide Analysis and Expression Profiling of SPS Gene Family in Brassica nupus L.


Abstract:
Sucrose phosphate synthase (SPS) is the rate-limiting enzyme that controls the sucrose biosynthesis in plants and has great influence on transportation and accumulation of photosynthate. In this study, we identified 11 members of the SPS gene family in the oilseed rape (Brassica nupus L.) genome. These SPS genes were classed into clusters A, B, and C according to gene structure and phylogenetic relationship. Gene structure prediction indicated that BnSPS genes were highly conserved, in which BnSPSC-1 consisted five exons and others consisted 11-15 exons. Promoter cis-element analysis indicated that BnSPS genes had not only essential responsive elements but also some types of elements potentially responsive to stresses or hormone responses. The qRT-PCR assay showed tissue-specific expressions of BnSPS genes with rich expressions of BnSPSA1 in flower, BnSPSB in leaf, bud and flower, BnSPSC in leaf, and BnSPSA2 in various tissues. The relative expression levels of BnSPSA1 and BnSPSC were higher in high-biomass rapeseed varieties than in low-biomass rapeseed varieties, whereas, that of BnSPSB was higher in low-biomass rapeseed varieties, suggesting that SPS genes are closely ralated to biological yield of rapeseed. This study provides basic information for functional study and utilization of BnSPS genes.

Key words:Brassica napus,sucrose phosphate synthase,genome-wide analysis,expression analysis

ReleaseDate:2018-03-08 10:17:42



[1] Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants. Plant Sci, 2000, 154:1-11

[2] Bahaji A, Baroja F E, Ricarte B A, Sánchez L Á M, Muñoz F J, Romero J M, Ruiz M T, Baslam M, Almagro G, Sesma M T, Pozueta R J. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis. Plant Sci, 2015, 238:135-147

[3] Huber S C, Huber J L. Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Biol, 1996, 47:199-222

[4] 李永庚, 于振文, 姜东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27:658-664 Li Y G, Yu Z W, Jiang D, Yu S L. Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high yielding wheat. Acta Agron Sin, 2001, 27:658-664(in Chinese with English abstract)

[5] Sawitri W D, Narita H, Ishizaka I E, Sugiharto B, Hase T, Nakagawa A. Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed in E. coli and insect Sf9 cells:an importance of the N-terminal domain for an allosteric regulatory property. J Biochem, 2016, 159:599-607

[6] Langenkämper G, Fung R W M, Newcomb R D, Atkinson R G. Gardner R C, MacRae E A. Sucrose phosphate synthase genes in plants belong to three different families. J Mol Evol, 2002, 54:322-332

[7] Lunn J E, Macrae E. New complexities in the synthesis of sucrose. Curr Opin Plant Biol, 2003, 6:208-214

[8] Castleden C K, Aoki N, Gillespie V J, MacRae E A, Quick W P, Buchner P, Foyer C H, Furbank R T, Lunn J E. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol, 2004, 135:1753-1764

[9] Grof C P L, So C T E, Perroux J M, Bonnett G, Forrester R I. The five families of sucrose-phosphate synthase genes in Saccharum spp. are differentially expressed in leaves and stem. Funct Plant Biol, 2006, 33:605-610

[10] Sun J D, Zhang J S, Larue C T, Larue C T, Huber S C. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Plant, Cell & Environ, 2011, 34:592-604

[11] Jiang J, Zhang Z, Cao J. Pollen wall development:the associated enzymes and metabolic pathways. Plant Biol, 2013, 15:249-263

[12] Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 2014, 508:546-549

[13] Chen S, HajirezaeI M, Börnke F. Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiol, 2005, 139:1163-1174

[14] Park J Y, Canam T, Kang K Y, Ellis D D, Mansfild S D. Over-expression of an Arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Transgenic Res, 2008, 17:181-192

[15] Huber S C. Role of sucrose-phosphate synthase in partitioning of carbon in leaves. Plant Physiol, 1983, 71:818-821

[16] 刘凌霄, 沈法富, 卢合全, 韩庆点, 刘云国. 蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展. 分子植物育种, 2005, 3:275-281 Liu L X, Shen F F, Lu H Q, Han Q D, Liu Y G. Research Advance on sucrose phosphate synthase in sucrose metabolism. Mol Plant Breed, 2005, 3:275-281(in Chinese with English abstract)

[17] Baxter C J, Foyer C H, Turner J, Rolfe S A, Quick W P. Elevated sucrose phosphate synthase activity in transgenic tobacco sustains photosynthesis in old leaves and alters development. J Exp Bot, 2003, 54:1813-1820

[18] Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R. Over-expression of a maize SPS gene improves yield characters of potato under field conditions. Plant Prod Sci, 2008, 11:104-107

[19] Ohsugi R, Huber S C. Light modulation and localization of sucrose phosphate synthase activity between mesophyll cells and bundle sheath cells in C4 species. Plant Physiol, 1987, 84:1096-1101

[20] Reimholz R, Geiger M, Haake V, Deiting U, Krause K P, Sonnewald U, Stitt M. Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant, Cell & Environ, 1997, 20:291-305

[21] Quick P, Siegl G, Neuhaus E, Feil R, Stitt M. Shortterm water stress leads to a stimulation of sucrose synthesis by activating sucrose-phosphate synthase. Planta, 1989, 177:535-546

[22] Seneweera S P, Basra A S, Barlow E W, Conroy J P. Diurnal regulation of leaf blade elongation in rice by CO2 (Is it related to sucrose-phosphate synthase activity?). Plant Physiol, 1995, 108:1471-1477

[23] Gibon Y, Bläsing O E, Palacios R N, Pankovic D, Hendriks J H M, Fisahn J, Höhne M, Gunther M, Stitt M. Adjustment of diurnal starch turnover to short days:depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J, 2004, 39:847-862

[24] Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, Ohsugi R. Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice. Plant Sci, 2011, 181:159-166

[25] Winter H, Huber S C. Regulation of sucrose metabolism in higher plants:localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol, 2000, 35:253-289

[26] 唐湘如, 官春云. 施氮对油菜几种酶活性的影响及其与产量和品质的关系. 中国油料作物学报, 2001, 23(4):32-37 Tang X R, Guan C Y. Chinese journal of oil crop sciences, Effect of N application on activities of several enzymes and trait of yield and quality in rapeseed cultivar Xiangyou No.13. Chin J Oil Crop Sci, 2001, 23(4):32-37(in Chinese)

[27] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6:Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30:2725-2729

[28] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy:SIB bioinformatics resource portal. Nucl Acids Res, 2012, 40:W597-W603

[29] Hu B, Jin J P, Guo A Y, Zhang H, Luo J H, Gao G. GSDS 2.0:an upgraded gene feature visualization server. Bioinformatics, 2015, 31:1296-1297

[30] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME SUITE:tools for motif discovery and searching. Nucl Acids Res, 2009, 37:W202-W208

[31] Jones P, Binns D, Chang H Y, Fraser M, Li W Z, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn A F, Sangrador V A, Scheremetjew M, Yong S Y, Lopez R, Hunter S. InterProScan 5:genome-scale protein function classification. Bioinformatics, 2014, 30:1236-1240

[32] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer Y V D, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002, 30:325-327

[33] Rombauts S, Déhais P, Van M M, Rouzé P. PlantCARE, a plant cis-acting regulatory element database. Nucl Acids Res, 1999, 27:295-296

[34] Wei L J, Jian H J, Lu K, Filardo F, Yin N W, Liu L Z, Qu C M, Li W, Du H, Li J N. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J, 2016, 14:1368-1380

[35] 李乐, 许红亮, 杨兴露, 李雅轩, 胡英考. 大豆LEA基因家族全基因组鉴定、分类和表达. 中国农业科学, 2011, 44:3945-3954 Li L, Xu H L, Yang X L, Li Y X, Hu Y K, Genome-wide identification, classification and expression analysis of LEA gene family in soybean. Sci Agric Sin, 2011, 44:3945-3954(in Chinese with English abstract)

[36] 王小非, 刘鑫, 苏玲, 孙永江, 张世忠, 郝玉金, 由春香. 番茄LBD基因家族的全基因组序列鉴定及其进化和表达分析. 中国农业科学, 2013, 46:2501-2513 Wang X F, Liu X, Su L, Sun Y J, Zhang S Z, Hao Y J, You C X. Identification, evolution and expression analysis of the LBD gene family in tomato. Sci Agric Sin, 2013, 46:2501-2513(in Chinese with English abstract)

[37] 许园园, 蔺经, 李晓刚, 常有宏. 梨CBL基因家族全基因组序列的鉴定及非生物胁迫下的表达分析. 中国农业科学, 2015, 48:735-747 Xu Y Y, Lin J, Li X G, Chang Y H. Identification and expression analysis under abiotic stresses of the CBL gene family in pear. Sci Agric Sin, 2015, 48:735-747(in Chinese with English abstract)

[38] Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Front Plant Sci, 2016, 7:1464-1480

[39] Yoo M J, Ma T Y, Zhu N, Liu L H, Harmon A C, Wang Q M, Chen S X. Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells. Plant Mol Biol, 2016, 91:211-227

[40] He Y J, Mao S S, Gao Y L, Wu D M, Cui Y X, Li J N, Qian W. Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus. PLoS One, 2016, 11:e0157558

[41] Dun X L, Shen W H, Hu K N, Zhou Z F, Xia S Q, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D, Lagercrantz U. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages. Plant Physiol, 2014, 166:1403-1419

[42] Lysak M A, Cheung K, Kitschke M, Bureš P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol, 2007, 145:402-410

[43] Wang X W, Wang H Z, Wang J, Sun R F, Wu J, Liu S Y, Bai Y Q, Mun J H, Bancroft I, Cheng F, Huang S W, Li X X, Hua W, Wang J Y, Wang X Y, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Wesshaar B, Liu B H, Li B, Liu B, Tong C B, Song C, Duran C, Peng C F, Geng C Y, Koh C, Lin C Y, Edwards D, Mu D S, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bommema G, Tang H B, Wang H P, Belcram H, Zhou H L, Hirakawa H, Abe H, Guo H, Wang H, Jin H Z, Parkin I A P, Batley J, Kim J S, Just J, Li J W, Xun J H, Deng J, Kim J A, Li J P, Yu J Y, Meng J L, Wang J P, Min J M, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M X, Jin M N, Ramchiary N, Drou N, Berkman P J, Cai Q L, Huang Q F, Li R Q, Tabata S, Cheng S F, Zhang S, Zhang S J, Huang S M, Sato S, Sun S L, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y R, Du Y C, Liao Y C, Lim Y, Narusaka Y, Wang Y P, Wang Z Y, Li Z Y, Wang Z W, Xiong Z Y, Zhang Z H. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43:1035-1039

[44] Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A. P., Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S K, Yang L M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J N, Jiang L C, Batley J, Sharpe A G, Park B, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z S, Liu X Q, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploidy genomes. Nat Commun, 2014, 5:3930

[45] Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa, Silva C D, Just J, Falentin C, Koh C S, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M L, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T, Thi V H D, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H. D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J, Adams K L, Batley J, Snowdon R J, Tost J, Ewards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345:950-953

[46] Xu G X, Guo C, Shan H Y, Kong H Z. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109:1187-1192

[47] Rogozin I B, Sverdlov A V, Babenko V N, Koonin E V. Analysis of evolution of exon-intron structure of eukaryotic genes. Briefings Bioinform, 2005, 6:118-134

[48] Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P. The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta, 2000, 1465:324-342

[49] Volkert K, Debast S, Voll L M, Voll H, Schießl I, Hofmann J, Schneider S, Börnke F. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. J Exp Bot, 2014, 65:5217-5229

[50] Hirose T, Hashida Y, Aoki N, Okamura M, Yonekura M, Ohto C, Terao T, Ohsugi R. Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rise, OsSPS1, shows the importance of sucrose synthesis in pollen germination. Plant Sci, 2014, 225:102-106

[51] Chen S, Hajirezaei M, Börnke F. Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiol, 2005, 139:1163-1174

[52] Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016, 6:36452