doi:

DOI: 10.3724/SP.J.1006.2019.82049

Acta Agronomica Sinica (作物学报) 2019/45:5 PP.662-675

Phenotypic identification and gene mapping of temperature-sensitive green-revertible albino mutant tsa2 in rice (Oryza sativa L.)


Abstract:
Temperature-sensitive leaf color mutants of rice are ideal materials in studies on photosynthesis, chloroplast structure and function, and chloroplast development. A temperature-sensitive green-revertible albino mutant (tsa2) with genetically stable mutational traits was screened out from the progeny of ethyl methane sulfonate (EMS) treated indica three-line maintainer line Xinong 1B. The wild type seedlings had normal phenotype at 22℃, while the mutant tsa2 had completely albino leaves and about 40% of albino seedlings died at the seedling stage; the photosynthetic pigment contents and photosynthetic rate of surviving albino seedlings decreased significantly, and the main agronomic traits were significantly lower than those of the wild type at maturity stage. When germinated at 28℃, tsa2 showed light-green leaves with white streaks and significantly lower photosynthetic pigment contents than the wild type, while a small difference of photosynthetic rate and main agronomic traits between the tsa2 and the wild type. No significant difference in leaves was observed between tsa2 and the wild type when seedlings germinated at 32℃. Transmission electron microscope observation revealed that the albino leaves of tsa2 demonstrated abnormal chloroplast development (without differentiated grana and granum lamella) or without chloroplast at 22℃ and completely developed chloroplasts in partial mesophyll cells at 28℃, and normal number and morphology of mesophyll cells compared with wild type at 32℃. The analysis of qRT-PCR indicated that genes related to partial photosynthetic pigment metabolism pathways, chloroplast development and photosynthesis expressed in tsa2 to a varying degrees compared with these of the wild type. Genetic analysis suggested that mutational phenotype of tsa2 was controlled by a single recessive nuclear gene, TSA2, which was finally mapped between SSR markers S5-57 and S5-119 on chromosome 5, with a physical distance of 718 kb. These results lay a foundation for the research on genetic improvement and the mechanism explanation of chloroplast development affected by temperature in rice (Oryza sativa L.).

Key words:rice (Oryza sativa L.),temperature-sensitive,green-revertible albino,chloroplast ultrastructure,gene mapping

ReleaseDate:2019-11-05 15:29:59



[1] Kurata N, Miyoshi K, Nonomura K, Yamazaki Y, Ito Y. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol, 2005, 46:48-62.

[2] 黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建. 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005, 25:1685-1691. Huang X Q, Zhao H X, Dong C L, Sun Y Y, Wang P R, Deng X J. Chlorophyll-deficient rice mutants and their research advances in biology. Acta Bot Boreali-Occident Sin, 2005, 25:1685-1691(in Chinese with English abstract).

[3] 兰涛, 汪斌, 凌秋平, 徐春花, 童治军, 梁康迳, 段远霖, 金晶, 吴为人. 水稻苗期低温失绿基因cisc(t)的精细定位及其候选基因的确定. 科学通报, 2010, 55:2183-2187. Lan T, Wang B, Ling Q P, Xu C H, Tong Z J, Liang K J, Duan Y L, Jin J, Wu W R. Fine mapping of cisc(t), a gene for cold-induced seedling chlorosis, and identification of its candidate in rice. Chin Sci Bull, 2010, 55:2183-2187(in Chinese).

[4] Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genomics, 2009, 36:117-123.

[5] 郭涛, 黄永相, 黄宣, 刘永柱, 张建国, 陈志强, 王慧. 水稻叶色白化转绿及多分蘖矮秆基因hw-1(t)的图位克隆. 作物学报, 2012, 38:1397-1406. Guo T, Huang Y X, Huang X, Liu Y Z, Zhang J G, Chen Z Q, Wang H. Map-based cloning of a green-revertible albino and high-tillering dwarf gene hw-1(t) in rice. Acta Agron Sin, 2012, 38:1397-1406(in Chinese with English abstract).

[6] Kusumi K, Mizutani A, Nishimura M, Iba K. A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997, 12:1241-1250.

[7] Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52:512-527.

[8] Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H, Wan J M. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159:227-238.

[9] 简磊, 王仲康, 曾冬冬, 秦冉, 石春海, 金晓丽. 水稻白化转绿突变体albg的鉴定和基因精细定位. 核农学报, 2017, 31:2289-2297. Jian L, Wang Z K, Zeng D D, Qin R, Shi C H, Jin X L. Identification and gene fine mapping of green-revertible albino mutant albg in rice. J Nucl Agric Sci, 2017, 31:2289-2297(in Chinese with English abstract).

[10] Zhang T, Feng P, Yu P, Yu G L, Sang X C, Ling Y H, Zeng X Q, Li Y D, Huang J Y, Zhang T Q, Zhao F M, Wang N, Zhang C W, Yang Z L, Wu R H, He G H. VIRESCENT-ALBINO LEAF 1 regulates leaf colour development and cell division in rice. J Exp Bot, 2018, 69:4791-4804.

[11] Lichtenthaler H K. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148:350-382.

[12] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8:4321-4325.

[13] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88:9828-9832.

[14] 王忠伟. 水稻黄绿叶基因YGL8和YGL9的克隆与功能分析. 西南大学博士学位论文, 重庆, 2016. Wang Z H. Cloning and functional analysis of two yellow-green leaf genes YGL8 and YGL9 in rice (Oryza sativa L.). PhD Dissertation of Southwest University, Chongqing, China, 2016(in Chinese with English abstract).

[15] 全瑞兰, 王青林, 马汉云, 扶定, 霍二伟, 沈光辉, 郭桂英. 水稻白化转绿突变体研究进展. 安徽农学通报, 2015, 21(12):17-20. Quan R L, Wang Q L, Ma H Y, Fu D, Huo E W, Shen G H, Guo G Y. Research advances on green-revertible albino mutants of rice. Anhui Agric Sci Bull, 2015, 21(12):17-20(in Chinese with English abstract).

[16] 王付华, 王亚, 王青林, 尹海庆, 王生轩, 陈献功, 孙建军, 王越涛, 付景, 白涛, 周柯. 水稻白化复绿突变体白784的生理特性分析及基因精细定位. 河南农业科学, 2015, 44(10):17-23. Wang F H, Wang Y, Wang Q L, Yin H Q, Wang S X, Chen X G, Sun J J, Wang Y T, Fu J, Bai T, Zhou K. Physiological characters analysis and gene fine mapping of green-revertible albino mutation line Bai 784. J Henan Agric Sci, 2015, 44(10):17-23(in Chinese with English abstract).

[17] Xia J C, Wang Y P, Ma B T, Yin Z Q, Hao M, Kong D W, Li S G. Ultrastructure and gene mapping of the albino mutant al12 in rice (Oryza sativa L.). Acta Genet Sin, 2006, 33:1112-1119.

[18] 郑加兴, 覃保祥, 邱永福, 刘芳, 张月雄, 马增凤, 刘驰, 李容柏. 水稻低温白化转绿突变系ds93的形态生理特性及基因定位. 西南农业学报, 2013, 26:843-849. Zheng J X, Qin B X, Qiu Y F, Liu F, Zhang Y X, Ma Z F, Liu C, Li R B. Physiological character and gene mapping of virescent mutant line ds93 in rice (Oryza sativa L.). Southwest China J Agric Sci, 2013, 26:843-849(in Chinese with English abstract).

[19] Peng Y, Zhang Y, Lyu J, Zhang J H, Li P, Shi X L, Wang Y F, Zhang H L, He Z H, Teng S. Characterization and fine mapping of a novel rice albino mutant low temperature albino 1. J Genet Genomics, 2012, 39:385-396.

[20] 王军, 杨杰, 陈志德, 范方军, 朱金燕, 杨金欢, 仲维功. 水稻白化转绿突变体v13(t)的生理特性和基因定位. 中国农业科学, 2011, 44:1973-1979. Wang J, Yang J, Chen Z D, Fan F J, Zhu J Y, Yang J H, Zhong W G. Physiological characteristics and gene mapping of rice albino green mutant v13(t) in rice. Sci Agric Sin, 2011, 44:1973-1979(in Chinese with English abstract).

[21] 刘钰龙, 刘峰, 周坤能, 苏晓妹, 方先文, 张云辉, 鲍依群. 水稻温敏型叶片白化突变体tsa1的表型鉴定和基因定位. 作物学报, 2016, 42:1754-1763. Liu Y L, Liu F, Zhou K N, Su X M, Fang X W, Zhang Y H, Bao Y Q. Phenotypic identification and gene mapping of rice albino mutant tsa1 in warm-sensitive leaves. Acta Agron Sin, 2016, 42:1754-1763(in Chinese with English abstract).

[22] 崔海瑞, 夏英武, 高明尉. 温度对水稻突变体W1叶色及叶绿素生物合成的影响. 核农学报, 2001, 15:269-273. Cui H R, Xia Y W, Gao M W. Effects of temperature on leaf color and chlorophyll biosynthesis of rice mutant W1. Acta Agric Nucl Sin, 2001, 15:269-273(in Chinese).

[23] 舒庆尧, 刘贵富, 夏英武. 温敏水稻叶色突变体的研究. 核农学报, 1996, 1(10):6-10. Shu Q Y, Liu G F, Xia Y W. Temperature-sensitive leaf color mutation in rice (Oryza sativa L.). Acta Agric Nucl Sin, 1996, 1(10):6-10(in Chinese).

[24] 吴殿星, 舒庆尧, 夏英武, 郑涛, 刘贵付. 一个新的水稻转绿型白化突变系W25的叶色特征及遗传. 浙江农业学报, 1996, 8:372-374. Wu D X, Shu Q Y, Xia Y W, Zheng T, Liu G F. Leaf color character and genetics of a new green able albino mutation line W25 of rice (Oryza sativa L.). Acta Agric Zhejiangensis, 1996, 8:372-374(in Chinese).

[25] 董彦君, 董文其, 张小明, 石守望, 张宏德. 突变体Fan5苗色低温敏感性状的遗传分析. 中国水稻科学, 1995, 9:249-250. Dong Y J, Dong W Q, Zhang X M, Shi S W, Zhang H D. Genetic analysis of low-temperature-sensitive seedling-colour character in the mutant Fan5. Chin J Rice Sci, 1995, 9:249-250(in Chinese with English abstract).

[26] 张天泉, 郭爽, 邢亚迪, 杜丹, 桑贤春, 凌英华, 何光华. 水稻新黄绿叶基因YGL9的分子定位. 作物学报, 2015, 41:989-997. Zhang T Q, Guo S, Xing Y D, Du D, Sang X C, Ling Y H, He G H. Molecular mapping of a new yellow green leaf gene YGL9 in rice (Oryza sativa L.). Acta Agron Sin, 2015, 41:989-997(in Chinese with English abstract).

[27] Wu Z, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145:29-40.

[28] Yoo J H, Park J H, Cho S H, Yoo S C, Li J J, Zhang H T, Kim K S, Koh H J, Paek N C. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol Biol, 2011, 77:631-641.

[29] Miyoshi K, Ito Y, Serizawa A, Kurata N. OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J, 2003, 36:532-540.

[30] Moore M, Goforth R l, Mori H, Henry R. Functional interaction of chloroplast SRP/FtsY with the ALB3 translocase in thylakoids:substrate not required. J Cell Biol, 2003, 162:1245-1254.

[31] Motohashi R, Nagata N, Ito T, Takahashi S, Hobo T, Yoshida S, Shinozaki K. An essential role of a TatC homologue of a DpH-dependent protein transporter in thylakoid membrane formation during chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2001, 98:499-504.