doi:

DOI: 10.3724/SP.J.1004.2012.00341

Acta Automatica Sinica (自动化学报) 2012/38:3 PP.341-348

Improved Multiple Model Particle PHD and CPHD Filters


Abstract:
The multiple model probability hypothesis density (PHD) filter is an effective algorithm for tracking multiple maneuvering targets. However, when the conditional mode probabilities have small values, there is a particle degenerate problem and the Poisson assumption for the target number distribution will lead to an exaggerating effect of missed detections on the target number estimation. To solve these problems, an improved algorithm is proposed in this paper, which approximates the model conditional probability hypothesis density of target states by particles, and makes the interaction between survival targets by resampling, without any a priori assumption of the noise. Further more, the improved algorithm is implemented in the framework of the cardinalized PHD (CPHD) filter, so as to improve the accuracy of target number estimation. The simulation results show that the improved algorithm has better performance in terms of state filtering and target number estimation, so that this algorithm will have good application prospects.

Key words:Multiple model, particle filter (PF), probability hypothesis density (PHD) filter, maneuvering target tracking

ReleaseDate:2014-07-21 16:25:21

Funds:Supported by National Natural Science Foundation of China (60871074)



1 McGinnity S, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012

2 Gordon N J, Maskell S, Kirubarajan T. Efficient particle filters for joint tracking and classification. In: Proceedings of the Signal and Data Processing of Small Targets. Orlando, USA: SPIE, 2002. 439-449

3 Wang Ming-Hui, You Zhi-Sheng, Han Rong-Chun, Zhang Jian-Zhou. The advanced IMM-PDAF algorithm in a heavy clutter environment. Acta Automatica Sinica, 2001, 27(2): 267-271 (王明辉, 游志胜, 韩荣椿, 张建州. 强干扰环境下性能优化的相互作用多模型--概率数据关联算法. 自动化学报, 2001, 27(2): 267-271)

4 Pollard E, Pannetier B, Rombaut M. Hybrid algorithms for multitarget tracking using MHT and GM-CPHD. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 832-847

5 Mahler R. Multitarget Bayes filtering via first-order multi-target moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178

6 Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Tracking partly resolvable group targets using SMC-PHDF. Acta Automatica Sinica, 2010, 36(5): 731-741 (连峰, 韩崇昭, 刘伟峰, 元向辉. 基于SMC-PHDF的部分可分辨的群目标跟踪算法. 自动化学报, 2010, 36(5): 731-741)

7 Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104

8 Li W, Jia Y M. Gaussian mixture PHD filter for jump Markov models based on best-fitting Gaussian approximation. Signal Processing, 2011, 91(4): 1036-1042

9 Liu W F, Han C Z, Lian F, Zhu H Y. Multitarget state extraction for the PHD filter using MCMC approach. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 864-883

10 Pasha S A, Vo B N, Tuan H D, Ma W K. A Gaussian mixture PHD filter for jump Markov system models. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919-936

11 Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Multiple-model probability hypothesis density smoother. Acta Automatica Sinica, 2010, 36(7): 939-950 (连峰, 韩崇昭, 刘伟峰, 元向辉. 多模型概率假设密度平滑器. 自动化学报, 2010, 36(7): 939-950)

12 Clark D, Vo B N. Convergence analysis of the Gaussian mixture PHD filter. IEEE Transactions on Signal Processing, 2007, 55(4): 1204-1212

13 Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 87-98

14 Mahler R. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543

15 Ouyang Cheng, Ji Hong-Bing, Zhang Jun-Gen. Improved CPHD filter for multitarget tracking. Journal of Electronics and Information Technology, 2010, 32(9): 2112-2118 (欧阳成, 姬红兵, 张俊根. 一种改进的CPHD多目标跟踪算法. 电子与信息学报, 2010, 32(9): 2112-2118)

16 Blom H, Bloem E A. Exact Bayesian and particle filtering of stochastic hybrid systems. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 55-70

17 Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457

PDF