DOI: 10.3724/SP.J.1037.2009.00821

Acta Metallurgica Sinica (金属学报) 2010/46:5 PP.629-633


Ti--Zr--Ni quasicrystals can absorb a large amount of hydrogen, so have strong application potential in the hydrogen energy field and international thermonuclear experimental reactor (ITER) program. However, the hydrogenation of the quasicrystals is often hindered and even poisoned due to their surface oxidation. To inhibit the oxidation, Pd has been selected, because of its catalysis to hydrogen absorption, as a minor alloying element in Ti--Zr--Ni quasicrystals. In this paper, the Ti36Zr40Ni20Pd4 alloy was designed and its thermal stability and room--temperature deuteration were studied with XRD, DSC, OM, XPS and gas--solid reaction measurement apparatus. The XRD result shows that a single icosahedral quasicrystal (IQC) phase with a quasilattice constant aR=0.5174 nm was formed in the alloy by suction--casting method, which is metastable and transforms to conventional crystals tI--Zr2Ni and C14--TiZrNiPd (MgZn2 type) phase at about 400℃. The deuteration test below the transformed temperature indicates that the alloy can absorb deuterium up to a large concentration of 11.0 mmol/g (corresponding to 2.2%H, mass fraction) at room temperature after vacuuming and heating activation without any surface treatment. Once fully activated, the IQC can load deuterium rapidly with an absorption rate of 0.030 s-1 at ambient temperature, and has the quasilattice constant with about 5.5% expansion after two absorption cycles. The Ti36Zr40Ni20Pd4 IQC has better activation property and hydrogen capacity than the Ti40Zr40Ni20 IQC, which shows the catalyzing function of Pd.

Key words:Ti--Zr--Ni--Pd alloy, quasicrystal, deuterium, catalyzing

ReleaseDate:2014-07-21 15:17:51

Funds:Supported by Science and Technology Development Foundation of China Academy of Engineering Physics (No. 2007A07002)

[1] Bogdanovic B, Schwickardi M. Appl Phys, 2001; 72A: 221

[2] Chen P, Xiong Z T, Luo J Z, Lin J Y, Tan K L. Nature, 2002; 420: 302

[3] Xiong Z T, Yong C K, Wu G T, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, Johnson S R, Edwards P P, David W I F. Nat Mater, 2008; 7: 138

[4] Feng K M. Chin Nucl Power, 2009; 2: 212 (冯开明. 中国核电, 2009; 2: 212)

[5] Gibbons P C, Hennig R G, Huett V T, Kelton K F. J Non--Cryst Solids, 2004; 334: 461

[6] Kelton K F, Hartzell J J, Hennig R G, Huett V T, Takasaki A. Philos Mag, 2006; 86: 957

[7] Liu B Z, Liu D M, Wu Y M, Li L Q, Wang L M. Int J Hydro Energy, 2007; 32: 2429

[8] Liu B Z, Wu Y M, Wang L M. J Power Source, 2006; 162: 713

[9] Liu B Z, Wu Y M, Wang L M. J Power Source, 2006; 159: 1458

[10] Liu B Z, Wu Y M, Wang L M. Int J Hydrogen Energy, 2006; 31: 1394

[11] Liu B Z, Wu Y M, Wang L M. Rare Met, 2007; 26: 440

[12] Takasaki A, Huett V T, Kelton K F. J Non--Cryst Solids, 2004; 334: 457

[13] Takasaki A, Kelton K F. Int J Hydrogen Energy, 2006; 31: 183

[14] Hennig R G, Majzoub E H, Carlsson A E, Kelton K F, Henley C L, Yelon W B, Misture S. Mater Sci Eng, 2000; 294A: 361

[15] Kim J Y, Hennig R, Huett V T, Gibbons P C, Kelton K F. J Alloys Compd, 2005; 404: 388

[16] Huang H G, Dong P, Yin C, Zhang P C, Bai B, Dong C. Int J Hydrogen Energy, 2008; 33: 722

[17] Huang H G, Li R, Yin C, Zheng S T, Zhang P C. Int J Hydrogen Energy, 2008; 33: 4607

[18] Liu B Z, Liu J J, Mi G F, Zhang Z, Wu Y M, Wang L M. J Alloys Compd, 2009; 475: 881

[19] Liu B Z, Zhang Y D, Mi G F, Zhang Z, Wang L M. Int J Hydrogen Energy, 2009; 34: 6925

[20] Huang H G, Yin C, Wu J, Zhang P C. Chin J Nonferrous Met, 2008; 18: 108 (黄火根, 银 陈, 吴 江, 张鹏程. 中国有色金属学报, 2008; 18: 108)

[21] Cahn J W, Shechtman D, Gratias D. J Mater Res, 1986; 1: 13

[22] Qiang J B, Wang Y M, Wang D H, Dong C. Rare Met Mater Eng, 2004; 33: 949 (羌建兵, 王英敏, 王德和, 董 闯. 稀有金属材料与工程, 2004; 33: 949)

[23] Huang H G, Jia J P, Li R. Acta Metall Sin, 2009; 45: 1272 (黄火根, 贾建平, 李 嵘. 金属学报, 2009; 45: 1272)

[24] Hirooka Y, Miyake M, Sano T. J Nucl Mater, 1981; 96: 227

[25] Huang L J, Yu B X, Gao S J. Met Funct Mater, 1998; 5: 124 (黄利军, 虞炳西, 高树浚. 金属功能材料, 1998; 5: 124)

[26] Wang W W, Long X G. J Nucl Radiochem, 2007; 29: 80 (王伟伟, 龙兴贵. 核化学与放射化学, 2007; 29: 80)

[27] Coddens G, Viano A M, Gibbons P C, Kelton K F, Kramer M J. Solid State Comm, 1997; 104: 179

[28] Faust K R, Pfitsch D W, Stojanovich N A, McDowell A F, Adolphi N L, Majzoub E H, Kim J Y, Gibbons P C, Kelton K F. Phys Rev, 2000; 62B: 11444