doi:

DOI: 10.3724/SP.J.1037.2013.00341

Acta Metallurgica Sinica (金属学报) 2013/49:12 PP.1493-1500

EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF LASER WELDED DP780 STEEL JOINTS


Abstract:
Dual phase (DP) steels have good combinations of strength and ductility, and are being increasingly used in vehicle body structures to meet enhanced government regulations and safety standards. The use of DP steels in automotive industries involves laser welding, which would lead to changes in local material properties and create potential safety and reliability issues under dy- namic loads. The present work aimed to study the effects of strain rate on tensile properties and deformation behavior of laser welded DP780 steel joints. The results showed that the deformation behavior of laser welded joints was more sensitive to strain rate as compared to base metal of DP780 steel. The strength of DP780 steel joint increased with increasing strain rate, while the ductility de-creased first with increasing strain rate from 10-3to101s-1, and then increased up to a strain rate of 102 s-1. The strain rate sensitivity of the deformation behavior of DP780 steel joints was mainly dependent on the change of deformation behavior and its mechanisms of base metal at various strain rates. The distance of the tensile failure location from the weld centerline decreased obviously with the increase of strain rate. And the failure location changed from the base metal to the softened heat-affected zone (HAZ) as strain rate increased. The mechanism for changing failure location can be related to the strain rate dependence of the plastic deformation behaviors of microstructures in various regions across a joint.

Key words:laser welding,dual phase steel,dynamic load,strain rate,deformation behavior

ReleaseDate:2015-03-06 17:46:58



[1] Sodjit S, Uthaisangsuk V. Mater Des, 2012:41:370.

[2] Oliver S, Jones T B, Fourlaris G. Mater Charact, 2007:58:390.

[3] Khan A S, Baig M, Choi S H, Yang H S, Sun X. Int J Plant, 2012:30-31:1

[4] Huh J, Huh H, Lee C S. Int J Plant, 2013:44:23

[5] Xia M, Sreenivasan N, Lawson S, Zhou Y, Tian Z. J Eng Mater Technol, 2007:129:446.

[6] Oliver S, Jones T B, Fourlaris G. Mater Sci Technol, 2007:23:55.

[7] Sharma R S, Molian P. J Mater Process Technol, 2011:211:1888.

[8] Xu W, Westerbaan D, Nayak S S, Chen D L, Goodwin F,Zhou Y. Mater Des, 2013:43:373.

[9] Farabi N, Chen D L, Li J, Zhou Y, Dong S J. Mater Sci Eng, 2010:A527:1215.

[10] Reisgen U, Schleser M, Mokrov O, Ahmed E. J Mater Process Technol, 2010:210:2188.

[11] Hazratinezhad M, Mostafa Arab N B, Sufizadeh A R,Torkamany M J. Mater Des, 2012:33:83.

[12] Sreenivasan N, Xia M, Lawson S, Zhou Y. J Eng Mater Technol, 2008:130:0410041

[13] Farabi N, Chen D L, Zhou Y. Procedia Eng, 2010:2:835.

[14] Boyce B L, Dilmore M F. Int J Ipi,Pact Eng, 2009:36:263

[15] Kim J H, Kim D, Han H N, Barlat F, Lee M G. Mater Sci Eng, 2013:A559:222.

[16] Wang W R, Li M, He C W, Wei X C, Wang D Z, Du H B. Mater Des, 2013:47:510.

[17] He Z P, He Y L, Ling Y T, Wu Q H, Gao Y, Li L. J Mater Process Technol,2012:212:2141.

[18] Sun X, Soulami A, Choi K S, Guzman O, Chen W. Mater Sci Eng, 2012:A541:1.

[19] Curtze S, Kuokkala V T, Hokka M, Peura P. Mater Sci Eng, 2009:A507:124.

[20] Huh H, Kim S B, Song J H, Lim J H. Int J Mech Sci,2008:50:918.

[21] Dong D Y, Liu Y, Wang L, Su L J. Acta Metall Sin, 2013:49:159(董丹阳,刘杨,王磊,苏亮进.金属学报,2013:49:159)

[22] Baltazar Hernandez V H, Nayak S S, Zhou Y.Metall Mater Trans, 2011:42A:3115.

[23] Panda S K, Screenivasan N, Kuntz M L, Zhou Y. J Eng Mater Technol, 2008:130:0410031

[24] Meyers M A. Dynapzic Behavior of Materials. 2nd Ed.,New York:John Wiley and Sons Inc, 2006:330

[25] Johnston W G, Gilman J J. J Appl Phys, 1959:30:129.

[26] Liu Y, Wang L, He S S, Feng F, Lii X D, Zhang B J. Acta Metall Sin, 2012:48:49(刘杨,王磊,何思斯,冯飞.吕旭东,张北江.金属学报,2012:48:49)

[27] Liu J T, Wang Z G, Shang J K. Acta Metall Sin, 2008:44:1409(刘江涛,王中光,尚建库.金属学报,2008:44:1409)

[28] Liu Z L, You X C, Zhuang Z. Int J Solids Stru,ct, 2008:45:3674.

[29] Livingston J D, Chalmers B. Acta Mater, 1957:5:322.

[30] Rusinek A, Klepaczko J R. Mater Des, 2009:30:35.

[31] Meyer L W, Herzig N, Halle T, Hahn F, Krueger L, Staud-hammer K P. J Mater Process Technol, 2007:182:319.

[32] Rajeev K, Sia N N. Mech Mater, 1998:27:1.

[33] Shao H P, Gould J, Albright C. Metall Mater Traps, 2007:38B:321.

[34] Ghoo B Y, Keum Y T, Kim Y S. J Mater Process Technol,2001:113:692.

[35] Dry D, Waddell W, Owen D R J. Sci Teehnol Weld Join-ing, 2002:7:11.

[36] Dirras G, Gubicza J, Couque H, Ouarem A, Jenei P. Mater Sei Eng, 2013:A564:273.

[37] Zhu D Z, Wu G H, Chen G Q, Zhang Q. Mater Sci Eng,2008:A487:536.

[38] Lee W S, Lin C F. Mater Sci Eng, 1998:A241:48.

[39] Paul S K. Coptput Mater Sci, 2012:56:34.

[40] Sodjit S, Uthaisangsuk V. Mater Des, 2012:41:370.