doi:

DOI: 10.3724/SP.J.1037.2013.00349

Acta Metallurgica Sinica (金属学报) 2013/49:12 PP.1501-1507

EFFECT OF MICROSTRUCTURE ON FRACTURE TOUGHNESS OF NEW TYPE HOT-ROLLED NANO-SCALE PRECIPITATION STRENGTHENING STEEL


Abstract:
The fracture toughness of new type hot-rolled nano-scale precipitation strengthening steels (tensile strength of 700 MPa grade and 780 MPa grade) were evaluated by crack tip opening displacement (CTOD) experiments, and the influence mechanisms of microstructure, high angle grain boundaries, dislocation density and nano-scale precipitation on fracture toughness were discussed. The results indicated, when experimental temperature were room temperature,-10 and -30℃,the δQo.2BL value of 700 MPa grade carriage strip were 0.468, 0.333 and 0.248 mm, and the bo,2 value of 700 MPa grade carriage strip were 0.298, 0.234 and 0.215 mm, respectively. However, the δQo.2BL, value of 780 MPa grade crossbeam strip were 0.311, 0.290 and 0.247 mm, and the 60,2 value of 780 MPa grade crossbeam strip were 0.212, 0.212 and 0.198 mm, respectively. Therefore, the fracture toughness of 700 MPa grade steel was better than 780 MPa grade steel. The differences of microstructure between 700 MPa grade steel and 780 MPa grade steel mainly included four aspects:(1) the microstructure of 700 MPa grade steel was mainly ferrite, while the microstructure of 780 MPa grade steel was mainly bainitic ferrite; (2) the carbide shape of 700 MPa grade steel was granular or short rod, and 780 MPa grade steel was strip carbide; (3) the dislocation density of 780 MPa grade steel was significantly higher than 700 MPa grade steel; (4) the proportion of large-angle grain boundaries of 700 MPa grade steel and 780 MPa grade steel were 85.6% and 76.8%, respectively. Therefore, improving the volume fraction of ferrite and the proportion of high angle grain boundaries, refining carbide size and reducing dislocation density could effectively improve the fracture toughness of steels. Coarse precipitation (Nb,Ti)CN and grain boundary precipitation in microstructure deteriorated fracture toughness of steel, and semi-coherent precipitates nano-scale (Nb,Ti)C on ferrite or bainite matrix have less damaging effect on fracture toughness.

Key words:ultra-high strength steel,fracture toughness,microstructure,nano-scale precipi-tation

ReleaseDate:2015-03-06 17:46:59



[1] Zhong Q P, Zhao Z H. Fractography. Beijing:Higher Education Press, 2006:244(钟群鹏,赵子华.断口学.北京:高等教育出版社,2006:244)

[2] Lacroix G, Pardoen T, Jacques P J. Acta Mater, 2008:56:3900.

[3] Chen X, Li Y X, Flz H G. Acta Metall Sin, 2005:41:1061(陈祥,李言样,符寒光.金属学报,2005:41:1061)

[4] Bi Z Y, Yang J, Niu J, Zhang J X. Acta Metall Sin., 2013:49:576 (毕宗岳,杨军,牛靖,张建勋.金属学报,2013:49:576)

[5] Firrao D, Matteis P, Spena P R, Gerosa R. Mater Sci Eng,2013:A559:371.

[6] Seshu Kumar A, Ravi Kumar B, Datta G L, Ranganath V R. Mater Sci Eng, 2010:A527:954.

[7] Ren Z J, Ru C Q. Eng Fract Mech, 2013:99:214.

[8] Fan Z Y. Mater Sci Eng, 1995:A191:73.

[9] Lai G Y, Wood W E, Clark R A, Zackay V F, Parker ER. Metall Mater Trans, 1974:5B:1663.

[10] Shi Y W, Han Z X. J Mater Process Technol, 2008:207:30.

[11] Kim S, Lee S, Lee B S. Mater Sci Eng, 2003:A359:198.

[12] Youngblood J L, Raghauan M. Metall Mater Trans, 1977:8A:1439.

[13] Cao W D, Lu X P. Metald Mater Trans, 1987:18A:1569

[14] Ma Y, Pan T, Jiang $, Cui Y H, Su H, Peng Y. Acta Metall Sin, 2011:47:978(马跃,播博,江波,崔银会,苏航,彭云.金属学报,2011:47:978)

[15] Wang X N, Di H S, Du L X. Acta Metall Sin, 2012:48:621(王晓南,邸洪双,杜林秀.金属学报,2012:48:621)

[16] Wang X N, Du L X, Di H S, Xie H, Gu D H. Steel ResInt, 2011:82:1417

[17] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W,Yang K. Aata Mater, 2006:54:435

[18] Mills W J. J Teat Eval, 1981:9(1):56.

[19] Landes J D. Fatigue Fract Eng Mater Struct, 1995:18:1289.

[20] Sakamoto H, Toyama K, Hirakawa K. Mater Sci Eng,2000:A285:288.

[21] Fang H S, Liu D Y, Xu P G, Bai B Z, Yang Z G. Mater Mech Eng, 2001:25:1(方鸿生,刘东雨,徐平光,白乘哲,杨志刚.机械工程材料,2001:25:1)

[22] Griffith A A. Philos Traps R Soc, 1920:221A:163

[23] Lee K H, Kim M C, Yang W J, Lee B S. Mater Sci Eng,2013:A565:158.

[24] Qian C F, Jiang Z J, Chen P, Duan C H, Cui W Y. ActaMetall Sin, 2004:40:159(钱才富,姜忠军,陈平,段成红,崔文勇金属学报,2004:40:159)

[25] Xu J Q. Strength of Materials. Shanghai:Shanghai Jiao Tong University Press, 2009:59(许金泉,材料强度学.上海:上海交通大学出版社,2009:5的

[26] Hwang B, Kim C G, Lee T. Metall Mater Traps, 2010:41A:85.

[27] Byun J S, Shim J H, Cho Y W, Lee D N. Acta Mater,2003:51:1593.

[28] Yong Q L. Second Phases‘.Structural Steels. Beijing:Metallurgical Industry Press, 2006:145(雍岐龙.钥铁材料中的第二相.北京:冶金工业出版社,2006:145)

[29] Deardo A J. In:Bordignon P J P, Carneiro T, Duncombe J eds., The hundamental Physical Metallurgy of Niobium in Steels. Warrendale:TMS, 2003:427

[30] Wang X N, Du L X, Zhang H L, Di H S. J Iron Steel Res,2011:23(5):45(王晓南,杜林秀,张海仑,邸洪双钢铁研究学报,2011:23(5):45)