doi:

DOI: 10.3724/SP.J.1037.2013.00290

Acta Metallurgica Sinica (金属学报) 2013/49:12 PP.1549-1557

EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND PROPERTY OF 690 MPa GRADE OCEAN ENGINEERING STEEL UNDER FAST HEATING RATE


Abstract:
Ocean engineering steel has been rapidly developed with the exploration of ocean re-Bourses. A 690 MPa grade low carbon bainite steel was designed for ocean engineering, to upgrade per-formance饰microstructure control and the refinement and dispersion control of precipitates. This steel was tempered on-line with rapid heating rate after control rolling and accelerated cooling process. The results show that the mechanical properties, especially the strength-toughness balance, are strongly influenced by the transformation of untransformed austenite and the condition of precipitates. When fast tempering at 550℃,microstructure recovered and few precipitates appeared, bringing strength down seriously, untransformed austenite turned into martensite/austenite (M/A) islands on cooling.When the tempering temperature reached 600℃,the size of the M/A islands transformed from untrans-formed austenite decreased slightly, Cu and Nb/Ti precipitates increased greatly, bringing an apparent improvement in strength. When tempering temperature reached 660℃,precipitates got coarsened and made the strength decreases, the untransformed austenite formed retained austenite film between the laths, improving toughness and making the best strengthtoughness balance. When the temper-ing temperature reached the top at 700℃,the precipitates got further coarsened, the untransformed austenite on cooling turned into large M/A islands, bringing toughness and the strength-toughness balance down again. In general consideration, fast heating tempering at 600-660℃could make the steel has the best strength-toughness balance.

Key words:heating rate,tempering temperature,ocean engineering,untransformed austenite precipitate

ReleaseDate:2015-03-06 17:47:00



[1] Di G B, Liu Z Y, Ma Q S. J Iron Steel Res, 2010:22(7):51(狄国标,刘振宇,麻庆申.钢铁研究学报,2010:22(7):51)

[l6] Huang B, Lee C G. Mater Sci Eng, 2010:A527:4341.

[2] Tang D, Wu H B. Steel Rolling, 2012:29(2):1(唐狄,武会宾.轧钢,2012:29(2):1)

[3] He X L, Shang C J. Nigh Performance Low Carbon Bainice Steel. Beijing:Metallugical Industry Press, 2008:148(贺信莱,尚成嘉.高性能低碳贝氏体钢.北京:冶金工业出版社,2008:148)

[4] Gao K, Wang L D, Zhu M, Chen J D, Shi Y J, Kang M K. Acta Metall Sin, 2007:43:315(高宽,王六定,朱明,陈景东,施易军,康沫狂.金属学报,2007:43:315)

[5] Shang C J, Wang X M, Zhou Z J, Liang X, Miao C L, He X L. Acta Metall Sin, 2008:44:287(尚成嘉,王学敏,周召槛,梁鑫,缪成亮,贺信莱.金属学报,2008:44:287)

[6] Li X C, Xie Z J, Wang X L, Wang X M, Shang C J. Acta Metall Sin, 2013:49:167(李秀程,谢振家,王学林,王学敏,尚成嘉.金属学报,2013:49:167)

[7] Wan D C, Yu W, Li X L, Zhang J, Wu H B, Cai CZ W.Acta Metall Sin, 2012:48:455(万德成,余伟,李晓林,张杰,武会宾,蔡庆伍.金属学报,2012:48:455)

[8] Zhang J, Cai Q W, Wu H B, Zhang K, Wu B. J Iron Steel Res Int, 2012:19(3):67.

[9] Li X L, Yu W, Zhu A L, Wu H B, Wan D C, Zhang J.Trons Mater Heat Treat, 2012:33(12):100(李晓林,余伟,朱爱玲,武会宾,万德成,张杰.材料热处理学报,2012:33(12):100)

[10] Yakubtsov I A, Boyd J D. Mater Sci Technol, 2008:24:221.

[11] Zhang J, Cai CZ W, Wu H B, Fan X H, Zhang M J. J Univ Sci Technol, 2012:34:657(张杰,蔡庆伍,武会宾,樊学华,张明洁.北京科技大学学报,2012:34:657)

[12] Hayashi K, Nagao A, Matsuda Y. JFE Technol Report,2008:(11):19

[13] Okatsu M, Shikanai N, Kondo J. JFE Technol Report,2008:(12):8

[14] Zhang J, Cai Q W, Fan Y Q, Wu H B. Tinns Master Heat Trent, 2012:33(4):58(张杰.蔡庆伍,樊艳秋,武会宾·材料热处理学报,2012:33(4):58)

[15] Wu H B, Shang C J, Zhao Y T, Yang S W, Wang X M,He X L. Iron Steel, 2005:40(3):62(武会宾,尚成嘉,赵运堂,杨善武,王学敏,贺信莱.钥铁, 2005:40(3):62)

[17] Maleque M A, Poon Y M, Masjuki H H. J Mater Process Technod, 2004:153:482

[18] Nie W J, Wang X M, Wu S J, Guan H L, Shang C J. Sci China Technol Sci, 2012:55:1791.

[19] Kumar A, Singh S B, Ray R K. Mater Sci Eng, 2008:A474:270.

[20] You Y, Shang C J, Nie W J. Mater Sci Eng, 2012:A558:692.

[21] Suzuki M, Sakui S, Kojima T, Watanabe I. Quarterly J Jpn Weld Soc, 1987:(1):209

[22] Nakanishi M, Komizo Y, Fukada Y. Quarterly J Jpn Weld Soc, 1986:(2):447

[23] Sakuma Y, Mattock D K, Krauss G. Metall Trans, 1992:23A:1221.

[24] Zhang F T, Jiang J, Song J X, Han C. Acta Metall Sin,1986:22:B169(张弗天,姜健,宋建先,韩慈.金属学报,1986:22:B169)

[25] Song Y Y, Li X Y, Rong L J, Ping D H, Yin F X, Li Y Y.Mater Lett, 2010:64:1411.

[26] Morris J W, Guo Z, Krenn C R, Kim Y H. ISIJ Int, 2001:41:599.

[27] Song Y Y, Ping D H, Yin F X, Li Y Y. Mater Sci Eng,2010:A527:614.

[28] Yang Y H, Cai Q W, Wu H B, Wang H. Acta Metall Sin,2009:45:270(杨跃辉,蔡庆伍,武会宾,王华.金属学报,2009:45:270)

[29] You Y, Shang C J, Chen L. Mater Des, 2013:43:485.

[30] Davis C L, King J E. Metall Mater Turns, 1994:25A:563.

[31] Misra R D K, Jia Z, O'Malley R; Jansto S J. Mater Sci Eng, 2011:A528:8772.