doi:

DOI: 10.3724/SP.J.1037.2013.00301

Acta Metallurgica Sinica (金属学报) 2013/49:12 PP.1558-1566

EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C-Mn-Si STEEL


Abstract:
The effects of different precursor microstructure on the morphology and mechanical properties of the 0.22C-1.9Mn-1.32Si multiphase steel which was obtained饰the treatment of in- tercritical repeating-quenching and partitioning (IQ&P) heat treatment were examined. Under the same IQ&P heat treatment parameters, multiphase microstructure which contains lath-like ferrite ma- trix and film or short needle-like retained austenite can be obtained by the martensite (M) precursor steel; while multiphase steel which has a bainite-ferrite (B-F) precursor can obtain a microstructure of equiaxed-like ferrite matrix and particale like retained austenite. After the ICS&P process, tensile strength of the multiphase steel which has a B-F precursor is up to 976 MPa, but elongation of this kind of steel is only 26.7%, and thus the product of strength and elongation of this kind of steel is only 26 GPa}%; while multiphase steel which has a M precursor has realized the combined properties of high strength and excellent ductility, product of strength and elongation of this kind of steel reaches 31 GPa}%. As for the work hardening behavior of the uniform elongation stage, although B-F pre- cursor multiphase steel has a higher work hardening index n than the M precursor multiphase steel, stability of the retained austenite in this kind of steel is relatively poor, variation behavior curve of the instantaneous n value with true strain for this kind of steel shows a notched-like shape; as for the multiphase steel which has a M precursor, retained austenite in this kind of steel is relatively stable, variation behavior curve of the instantaneous n value with true strain for this kind of steel is much more steady, which shows a trend of gradual increasing. The reason for the different tensile testing and work hardening results above is related to the morphology, proportion and distribution state of the retained austenite and matrix microstructures, which is due to the effect of different morphology and microstructure characteristics of the precursor phases by the roots.

Key words:IQ&P process,multi-phase steel,retained austenite,instantaneous work harden-ing index

ReleaseDate:2015-03-06 17:47:00



[1] Speich G R, Demarest V A, Miller R L. Metall Trans,1981:12A:1419.

[2] Takashi F, Hirofumi M, Michio E, Hiroshi T, Kazuo K, Osamu A, Teruaki Y. Trans ISIJ, 1981:21:812.

[3] Matsumura O, SakumaY, Takechi H. Scr Metall, 1987:21:1301.

[4] Matsumura O, SakumaY, Takechi H. ISIJ Int, 1992:32:1014.

[5] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993:33:775.

[6] Speer J G, Matlock D K, De Cooman B C, Schroth J G.Acta Mater, 2003:51:2611.

[7] Speer J G, Edmonds D V, Rizzo F C, Matlock D K. Curr Opin Solid State Mater Sci, 2004:8:219.

[8] Edmonds D V, He K, Rizzo F C, De Cooman B C, Matlock D K, Speer J G. Mater Sci Eng, 2006:A438-440:25

[9] De Moor E, Lacroix S, Clarke A J, Penning J, Speer J G Metall Mater Trans, 2008:39A:2586

[10] Liu H P, Lu X W, Jin X J, Dong H, Shi J. Scr Mater,2011:64:749.

[11] Paravicini B E, Santofimia M J, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 2013:A559:486.

[12] Santofimia M J, Nguyen-Minh T, Zhao L, Petrov R,Sabirov I, Sietsma J. Mater Sci Eng, 2010:A527:6429.

[13] Maruyama H. J办.Soc Heat Treat, 1977:17:198

[14] Nishiyama Z. Martensitic Transformations. New York:Academic Press, 1978:60

[15] Sugimoto K, Usui N, Kobayashi M, Hashimoto S. ISIJ Int,1992:32:1311.

[16] Chiang J, Lawrence B, Boyd J D, Pilkey A K. Mater Sci Eng, 2011:A528:4516.

[17] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans,2009:40A:46.

[18] Sakuma Y, Mattock D K, Krauss G. Metnll Trans, 1992:23A:1221.

[19] Kim S J, Lee C G, Choi I, Lee S. Metall Mater Trnns, 2001:32A:505.

[20] Ren Y Q, Xie Z J, Shang C J. Acta Metoll Sin, 2012:48:1074(任勇强,谢振家,尚成嘉.金属学报,2012:48:1074)

[21] Dieter G E. Mechanicol Metolfurgy. 2nd Ed,New York:McGraw-Hill Book Company, 1988:87

[22] Jacques P, Cornet X, Harlet P, Ladriere J, Delannay F.Metall Mater Trans, 1998:29A:2383.

[23] Yakubovsky O, Fonstein N, Bhattacharya D. In:De Cooman B C ed., Proceedings Conference Trip-Aided Kigh Strength Ferrous Alloys, Aachen:Wissenschaftsverlag Mainz Gmbh, 2002:263

[24] Mahieu J, Maki J, De Cooman B C, Claessens S. Metall Mater Trans, 2002:33A:2573.

[25] Bai D Q, Chiro A D, Yue S. Mater Sci Foru}rrt, 1998:284-286:253

[26] Wang J, Van Der Zwaag S. Metall Mater Trans, 2001:32A:1527.

[27] Pereloma E V, Timokhina I B, Hodgson P D. Mater Sci Eng, 1999:273-275:448

[28] Baik S C, Park S H, Kwon O, Kim D I, Oh K H. ISIJ Int,2006:46:599.

[29] Thierry I, Jose D, Audrey C, Christopher O. Steel Res,2002:6-7:218

[30] Kwon E P, Fujieda 5, Shinoda K, Suzuki S. Mater Sci Eng,2011:A528:5007.

[31] Ryde L. Mater Sci Technol, 2006:22:1297.

[32] Xiong X C, Chen B, Huang M X, Wang J F, Wang L. Scr Mater, 2013:68:321.

[33] Tsukatani I, Hashimoto S I, moue T. ISIJ Int, 1991:31:992.

[34] Sugimoto K I, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993:33:775.