DOI: 10.3724/SP.J.1037.2013.00406

Acta Metallurgica Sinica (金属学报) 2013/49:12 PP.1581-1589


The single crystal supperalloy DD5 was brazed using Co-Ni-Si-B filler alloy at 1453 K. The microstructure of joint and effect of brazing time on the microstructure and mechanical properties were investigated by SEM, EPMA and TEM. The formation mechanism of joint was dis- cussed deeply. The result indicates that three distinct regions can be identified in a joint:the filler alloy zone, interfacial bonding zone, element diffusion zone. The filler alloy zone in the center of joint consists of Ni-Co solid solution, M3B2-type boride, CrB and Ni-Si compounds. The interfacial bonding zone adjacent to the filler alloy zone is composed of Ni-Co solid solution formed isothermally at brazing temperature. The element diffusion zone between the interfacial bonding zone and substrate consists of γ phase,γphase and granular M3B2 phase which was formed in element diffusion. With extending brazing time, the brazing defects reduce, the thickness of bonding layer and the size of spherical Ni-Co solid solution in the filler alloy zone increase, and the brittle compounds reduce. The tensile strength at 1143 K increases from 198.5 MPa to 580 MPa. The investigation on fracture of high temperature tensile specimens exhibits that the fracture occurred in the seam and the fractural model is a mixed fracture. Through extending brazing time the bonding strength between seam and substrate can be improved, the brittle compounds can be controlled and the mechanical properties of joint are improved. The analysis results of microstructure and properties also imply that the optimum holding time would be 180 min.

Key words:brazing,single crystal superalloy,Co-based filler alloy,microstructure,mechanical properties

ReleaseDate:2015-03-06 17:47:01

[1] Guo J T. Material Science and Engineering for Superalloys, Preparation Technology.Beijing:Science Press, 2008:452(郭建亭. 高温合金材料学, 制备工艺. 北京:科学出版社, 2008:452)

[2] Zhang X L, Zhou Y Z, Jin T, Sun X F. Acta Metall Sin, 2012:48:1229(张小丽, 周亦胄, 金涛, 孙晓峰. 金属学报, 2012:48:1229)

[3] Tung S K, Lim L C, Lai M O. Scr Mater, 1996:34:763.

[4] Guo L J, Li H J, Guo C, Li K Z, Feng T. Rare Met Mater Eng, 2011:40:2088.

[5] Pouranvari M, Ekrami A, Kokabi A H. J Alloys Compd, 2008:461:641.

[6] Liu W P, Zhuang H S. Acta Metall Sin, 1995:31:539(刘伟平, 庄鸿寿. 金属学报, 1995:31:539)

[7] Wu N, Li Y J, Wang J, Puchkov U A. J Mater Process Tech, 2012:212:794.

[8] Chen B, Xiong H P, Mao W, Cheng Y Y, Li X H. Acta Metall Sin, 2008:44:1260(陈波, 熊华平, 毛唯, 程耀永, 李晓红. 金属学报, 2008:44:1260)

[9] Wu X W, Chandel R S, Lia H, Seowa H P, Wu S C. J Mater Process Tech, 2000:104:34.

[10] Cao J, Song X G, Zheng Z J, Feng J C. Trans China Weld Inst, 2011:32(7):13(曹健, 宋晓国, 郑祖金, 冯吉才. 焊接学报, 2011:32(7):13)

[11] MacDonald W D, Eagar T W. Annu Rev Mater Sci, 1992:22:23.

[12] Li X H, Mao W, Guo W L, Xie Y H. Trans China Weld Inst, 2005, 26(4):51(李晓红, 毛唯, 郭万林, 谢永慧. 焊接学报, 2005, 26(4):51)

[13] Li W, Jin T, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2001:37:1166(李文, 金涛, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2001:37:1166)

[14] Li W, Jin T, Sun X F, Guo Y, Guan H R, Hu Z Q. Scr Mater, 2003:48:1283.

[15] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Charact, 2011:62:545.

[16] Liu J D. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007(刘纪德. 中国科学院金属研究所博士学位论文, 沈阳, 2007)

[17] Zhou Y, Mao W, Li X H. J Mater Eng, 2007:(5):3(周媛, 毛唯, 李晓红. 材料工程, 2007:(5):3)

[18] Neumeier S, Dinkel M, Pyczak F, Goken M. Mater Sci Eng, 2011:A528:815.

[19] Rabinkin A. Sci Tech Weld Join, 2004:9:181.

[20] Ou C L, Liaw D W, Du Y C, Shiue R K. J Mater Sci, 2006:41:6353.

[21] Tatsuya T, Kazumasa N, Hiroshi O, Mitsuhiro H. Calphad, 2003:27:161.

[22] Datta M K, Pabi S K, Murty B S. Mater Sci Eng, 2000:A284:219.