DOI: 10.3724/SP.J.1105.2014.13185

Acta Polymerica Sinica (高分子学报) 2014/014:2 PP.188-193

Studies on Influence of Ammonia on Properties of Cellulose I-β Based on Molecular Dynamics Simulation

The performance changes of cellulose I-β in the ammonia environment and non-ammonia environment were studied based on molecular dynamics simulation. The end-to-end distance of one cellulose chain, the diffusion behavior of ammonia in cellulose and hydrogen bonds between cellulose and ammonia were investigated. The results indicated that the end-to-end distance of the cellulose chain in ammonia environment got longer than that in non-ammonia condition with improving the flexibility of cellulose chain, which could reasonably interpret the common sense that “The treatment of liquid ammonia can be used to improve fiber flexibility”. The mean square displacements (MSDs) and diffusion coefficients of ammonia rose with increasing temperatures. When the temperature rose from 298 K to 398 K, the diffusion coefficients of ammonia increased by 87.8%. So the appropriate elevated temperature could reduce the soak time and thus the production efficiency in treatment of liquid ammonia could be improved. The total number of hydrogen bonds in ammonia environment increased due to the forming of hydrogen bonds between ammonia and cellulose I-β. By adding ammonia, the number of intrachain hydrogen bonds in a cellulose chain remained unchanged, but interchain hydrogen bonds among cellulose chains were weakened, contributing to the stronger movement of cellulose chains and showing a good swelling property of cellulose.

Key words:Cellulose I-β, Molecular dynamics simulation, Flexibility, Diffusion, Hydrogen bonds

ReleaseDate:2014-07-21 17:05:28

1 Li X F,Ding E Y,Li G K.Chinese J Polym Sci,2001,3(19):291~296

2 Zhang Jinming(张金明),Zhang Jun(张军).Acta Polymerica Sinica(高分子学报),2010,(12):1376~1398

3 Lv Ang(吕昂),Zhang Lina(张俐娜).Acta Polymerica Sinica(高分子学报),2007,(10):937~944

4 Zhan Huaiyu(詹怀宇),Li Zhiqiang(李志强),Cai Zaisheng(蔡再生).Cellulose Chemistry and Physics(纤维素化学与物理).Beijing(北京):Science Press(科学出版社),2005.97

5 Finkenstad T,Millane R.Macromolecules,1998,31(22):7776~7783

6 Sugiyama J,Okano T,Yamamoto H,Horii F.Macromolecules,1990,23(12):3196~3198

7 Lewin M,Raur O,Sello S B.Tex Res J,1974,44(9):680~686

8 Zhang Hua(张华),Feng Jiahao(冯家好),Li Jun(李俊),Zhang Jianchun(张建春).Journal of Textile Research(纺织学报),2008,29(6):68~72

9 Dornyi B,Csiszar E,Somlai C,Sajo I.Tex Res J,2006,76(8):639~636

10 Wu R L,Li T,Nies E.Chinese J Polym Sci,2013,31(1):21~38

11 Nishiyama Y,Langan P,Chanzy H.J Am Chem Soc,2002,124(31):9074~9082

12 Brandrup J,Immergut E H,Grulke E A.Polymer Handbook.New York:Wiley Interscience Publication,1999.476~479

13 Maple J R,Hwang M J,Stockfisch T P ,Dinur U,Waldman M,Ewig C S,Hagler A T.J Comput Chem,1994,15(2):162~182

14 Wada M,Hori R,Kim U,Sasaki S.Polym Degrad Stab,2010,95(8):1330~1334

15 Andrea T A,Swope W C,Andersen H C.J Chem Phys,1983,79(9):4576~4585

16 Berendsen H J C,Postma J P M,Funsteren W F.J Chem Phys,1984,81(4):3684~3690

17 Ewald P P.Annalen der Physik,1921,369(3):253~287

18 James F.M,Cathy E S,Philip E.M,Pierfrancesco Z,Robert W T,Junji S,Michael E H,John W B.Carbohydr Res,2006,341:138~152

19 Mazeau K,Heux L.J Phys Chem B,2003,107:2394~2403

20 Malin B,Lars A B,Karim M.J Phys Chem B,2007,111:9138~9145

21 Liao R J,Zhu M Z,Yang L J,Zhou X,Gong C Y.Phys B,2011,406:1162~1168

22 Chen M,Yannick J B,Michael E H,John W B.Carbohydr Res,2012,349:73~77

23 Barry J H,Anatole S.Polymer,1996,37:1833~1839

24 Zhu Mengzhao(朱孟兆),Liao Ruijin(廖瑞金),Yang Lijun(杨丽君),Hu Jian(胡舰).Journal of Xi’an Jiaotong University(西安交通大学学报),2009,4(43):111~115

25 Vishal A,George W H,W.Curtis C,Scott M A.J Chem Phys,2011,135:134506~134518

26 Liu Qingzhi(刘清芝),Yang Dengfeng(杨登峰),Hu Yangdong(胡仰栋).Chemical Journal of Chinese Universities(高等学校化学学报),2009,3(30):568~572

27 Allenm P,Tiledsley D J.Computer Simulation of Liquids.Oxford:Clarendon Press,1987.192~195

28 Mike J.Nature,2003,426:611~612