DOI: 10.3724/SP.J.1105.2014.13189

Acta Polymerica Sinica (高分子学报) 2014/014:2 PP.202-209

Synthesis of a Silane Coupling Agent and Its Application in Silica/NR Composites

A silane coupling agent was obtained by reaction of (3-glycidyloxy-propyl)trimethoxysilane (A187) and N-phenyl-1,4-phenylenedi-amine (PPDA). Its structure was characterized by 1H-NMR, IR and MS. After that, different amounts of the silane coupling agent were used to in situ modify the silica to prepare antioxidant functionalized silica/NR composites. The processing ability, mechanical properties and antioxidation effect of the composites were compared with those of the carbon black/NR, neat silica/NR and bis(3-triethoxysilylpropyl) tetrasulfane (Si69) modified silica/NR composites. Cure characteristics and RPA results showed that the viscosity, the highest torque, optimum cure time and dispersion of filler of the antioxidant functionalized silica/NR were improved. The mechanical properties of the composites increased with increasing amount of silane coupling agent first, and then reached a plateau. When the amount of silane coupling agent was more than or equal to 10.8% (wt% to silica), the tensile strength of the composites was as high as that of carbon black/NR and Si69 modified silica/NR, which was much higher than that of neat silica/NR. Moreover, the tear strength of the composites was higher than that of all references. After air ageing at 100 ℃ for different days, the mechanical property retention of the antioxidant functionalized silica/NR was better than that of all references with antioxidant 4020, which illustrates that the new silane coupling agent has better ageing resistance than antioxidant 4020.

Key words:Antioxidation, Silane coupling agent, Surface modification of silica, Silica/NR composites

ReleaseDate:2014-07-21 17:05:29

1 Idrus S S,Ismail H,Palaniandy S.Polym Test,2011,30(2):251~259

2 Ramorino G,Bignotti F,Pandini S,Riccò T.Compos Sci Technol,2009,69(7-8):1206~1211

3 Guo B C,Chen F,Lei Y D,Liu X L,Wan J J,Jia D M.Appl Sur Sci,2009,255:7329~7336

4 Wagner M P.Rubber Chem Technol,1976,49:703~704

5 Zhang M L,Ding L G,Jing X Y,Hou X Q.Chem Eng,2003,6:11~14

6 Schuring D J,Futamura S.Rubber Chem Techn,1990,63:315~367

7 Wolff S,Gǒrl U,Wang M J,Wolff W.Eur Rubber J,1994,176(1):16~19

8 Hair M L,Hertl W.J Phys Chem,1970,74(1):91~94

9 Hockey J A,Pethica B A.Trans Faraday Soc,1961,57:2247~2262

10 Wolff S.Rubber Chem Technol,1996,69:325~345

11 Reuvekamp L A E M,Brinke J W T,Swaaij P J V.Kautschuk Gummi Kunststoffe,2002,55(5) :41~47

12 Luginsland H D,Hueth K.Kautschuk Gummi Kunststoffe,2000,53(1):10~23

13 Yan H X ,Sun K ,Zhang Y X.J Appl Polym Sci,2004,94(6):64~68

14 Wang Can(王灿),Wan Shaoyang(阮少阳),Yin Chao(尹超).China Rubber Science and Technology Market(橡胶科技市场),2011,10:8~12

15 Jia Hongbing(贾红兵),Jin Zhigang(金志刚),Ji Qingmin(吉庆敏),Wang Ying(王颖),Zhang Shiqi(张士齐).China Rubber Industry(橡胶工业),1999,46(19):590~593

16 Sulekha P B,Joseph R,Manjooran K B.J Appl Polym Sci,2004,93(1):437~443

17 Abd El-Aziz El-Wakil,Mirham A B.J Appl Polym Sci,2011,119(4):2461~2467

18 Sulekha P B,Joseph R,George K E.Polym Degrad Stabil,1999,63(2):225~230

19 Sulekha P B,Joseph R,Madhusoodanan K N,Thomas K T.Polym Degrad Stabil,2002,77(3):403~416

20 Sulekha P B,Joseph R,Prathapan S.J Appl Polym Sci,2001,81(9):2183~2189

21 Liauw C M,Allen N S,Edge M,Lucchese L.Polym Degrad Stabil,2001,74(1):159~166

22 Pan Q W,Wang B B,Chen Z H,Zhao J Q.Mater Design,2013,50:558~565

23 Pan Q W,Wang B B,Chen Z H.Acta Materiae Compositae Sinica,2013,30(5)

24 Ansarifar A,Wang L,Ellis R J,Kirtley S P,Riyazeddin N.J Appl Polym Sci,2007,105(2):322~32

25 Ramier J.,Gauthier C,Chazeau L,Stelandrel L,Guy L.J Polym Sci:Part B:Polym Phy,2007,45:286~298

26 Bertora A,Castellano M,Marsano E,Alessi M,Conzatti L,Stagnaro P,Colucci G,Priola A,Turturro A.Macromol Mater Eng,2011,296:455~464

27 Yang Qingzhi(杨清芝).Practical Rubber Technology(实用橡胶工艺学).1st ed(第一版).Beijing(北京):Chemical Industry Press(化学工业出版社),2005.71~72