doi:

DOI: 10.3724/SP.J.1041.2017.00711

Acta Psychologica Sinica (心理学报) 2017/49:6 PP.711-722

Effects of spatial distance on visual working memory consolidation


Abstract:
During past years, visual working memory (VWM) consolidation has been studied extensively. Consolidation of visual information into VWM is widely considered to occur with capacity limit. Previous studies have demonstrated that two colors could be consolidated in parallel and two oriented gratings could be consolidated only in serial. Some researchers provided a bandwidth hypothesis for these results:because of the difference between the informational demands for color and for oriented grating, two colors could be consolidated in parallel without exceeding the bandwidth limit, whereas two oriented gratings could only be consolidated in serial because of exceeding the bandwidth limit. But other researchers recently realized that different positions of stimulus could affect the VWM consolidation as well. In the present study, we used change detection paradigm and sequential-simultaneous manipulation to examine whether the spatial distance between memory items could affect the VWM consolidation.

Key words:visual working memory,consolidation,bandwidth.

ReleaseDate:2017-08-10 07:39:27



Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16(8), 637-643.

Baddeley, A. (2012). Working memory:Theories, models, and controversies. Annual Review of Psychology, 63, 1-29.

Balaban, H., & Luria, R. (2015). The number of objects determines visual working memory capacity allocation for complex items. NeuroImage, 119, 54-62.

Becker, M. W., Miller, J. R., & Liu, T. S. (2013). A severe capacity limit in the consolidation of orientation information into visual short-term memory. Attention, Perception, & Psychophysics, 75(3), 415-425.

Chen, H., & Wyble, B. (2015). The location but not the attributes of visual cues are automatically encoded into working memory. Vision Research, 107, 76-85.

Chen, H., & Wyble, B. (2016). Attribute amnesia reflects a lack of memory consolidation for attended information. Journal of Experimental Psychology Human Perception & Performance, 42(2), 225-234.

Cowan, N. (2001). The magical number 4 in short-term memory:A reconsideration of mental storage capacity. Behavioral & Brain Sciences, 24(1), 87-114.

Droll, J. A., Hayhoe, M. M., Triesch, J., & Sullivan, B. T. (2005). Task demands control acquisition and storage of visual information. Journal of Experimental Psychology Human Perception & Performance, 31(6), 1416-1438.

Eriksen, C. W., & St James, J. D. (1986). Visual attention within and around the field of focal attention:A zoom lens model. Attention, Perception, & Psychophysics, 40(4), 225-240.

Franklin, A., Pilling, M., & Davies, I. (2005). The nature of infant color categorization:Evidence from eye movements on a target detection task. Journal of Experimental Child Psychology, 91(3), 227-248.

Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capacity limits in visual working memory. Current Opinion in Neurobiology, 20(2), 177-182.

Fuller, R. L., Luck, S. J., Braun, E. L., Robinson, B. M., Mcmahon, R. P., & Gold, J. M. (2009). Impaired visual working memory consolidation in schizophrenia. Neuropsychology, 23(1), 71-80.

Hardman, K. O., & Cowan, N. (2015). Remembering complex objects in visual working memory:Do capacity limits restrict objects or features?. Journal of Experimental Psychology Learning Memory & Cognition, 41(2), 325-347.

Hollingworth, A., & Luck, S. J. (2008). Visual memory systems. In Visual memory (pp. 3-8). New York, NY:Oxford University Press.

Holt, J. L., & Delvenne, J. F. (2014). A bilateral advantage in controlling access to visual short-term memory. Experimental Psychology, 61(2), 127-133.

Hüttermann, S., Memmert, D., & Simons, D. J. (2014). The size and shape of the attentional "spotlight" varies with differences in sports expertise. Journal of Experimental Psychology Applied, 20(2), 147-157.

Huang, L. Q., & Pashler, H. (2007). A Boolean map theory of visual attention. Psychological Review, 114(3), 599-631.

Jolicœur, P., & Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36(2), 138-202.

Laberge, D., & Brown, V. (1989). Theory of attentional operations in shape identification. Psychological Review, 96(1), 101-124.

Liu, T. S., & Becker, M. W. (2013). Serial consolidation of orientation information into visual short-term memory. Psychological Science, 24(6), 1044-1050.

Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity:From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391-400.

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347-356.

Malcolm, G. L., & Shomstein, S. (2015). Object-based attention in real-world scenes. Journal of Experimental Psychology:General, 144(2), 257-263.

Mance, I., Becker, M. W., & Liu, T. S. (2012). Parallel consolidation of simple features into visual short-term memory. Journal of Experimental Psychology:Human Perception & Performance, 38(2), 429-438.

Miller, J. R., Becker, M. W., & Liu, T. S. (2014). The bandwidth of consolidation into visual short-term memory depends on the visual feature. Visual Cognition, 22(7), 920-947.

Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology:Human Learning & Memory, 2(5), 509-522.

Railo, H. (2014). Bilateral and two-item advantage in subitizing. Vision Research, 103, 41-48.

Remington, R., & Pierce, L. (1984). Moving attention:Evidence for time-invariant shifts of visual selective attention. Attention, Perception, & Psychophysics, 35(4), 393-399.

Rideaux, R., Apthorp, D., & Edwards, M. (2015). Evidence for parallel consolidation of motion direction and orientation into visual short-term memory. Journal of Vision, 15(2), 17.

Ruzzoli, M., Gori, S., Pavan, A., Pirulli, C., Marzi, C. A., & Miniussi, C. (2011). The neural basis of the enigma illusion:A transcranial magnetic stimulation study. Neuropsychologia, 49(13), 3648-3655.

Shulman, G. L., Remington, R. W., & Mclean, J. P. (1979). Moving attention through visual space. Journal of Experimental Psychology:Human Perception & Performance, 5(3), 522-526.

Stevanovski, B., & Jolicœur, P. (2011). Consolidation of multifeature items in visual working memory:Central capacity requirements for visual consolidation. Attention, Perception, & Psychophysics, 73(4), 1108-1119.

Tsal, Y. (1983). Movement of attention across the visual field. Journal of Experimental Psychology:Human Perception & Performance, 9(4), 523-530.

Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology:Human Perception & Performance, 24(6), 1656-1674.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology:Human Perception & Performance, 27(1), 92-114.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology:Human Perception & Performance, 32(6), 1436-1451.

West, G. L., Pun, C., Pratt, J., & Ferber, S. (2010). Capacity limits during perceptual encoding. Journal of Vision, 10(2), 14.1-14.12.

Wilkinson, D., Ko, P., Milberg, W., & McGlinchey, R. (2008). Impaired search for orientation but not color in hemi-spatial neglect. Cortex, 44(1), 68-78.

Zimmer, H. D. (2008). Visual and spatial working memory:From boxes to networks. Neuroscience & Biobehavioral Reviews, 32(8), 1373-1395.