doi:

DOI: 10.3724/SP.J.1041.2019.00337

Acta Psychologica Sinica (心理学报) 2019/51:3 PP.337-352

Similarity in processes of risky choice and intertemporal choice: The case of certainty effect and immediacy effect


Abstract:
Risky choice (RC) and intertemporal choice (IC) are two types of common decisions that are vital to human's everyday life. RC and IC share similarities regarding theoretical development, behavioral effects, and neural basis. One critical challenge is that, although previous studies have revealed that RC and IC involve similar cognitive processes, results are mixed regarding what the exact mechanism might be. The mainstream discounting model hypothesizes that both RC and IC follow a compensatory and alternative-based rule. However, other models suggest that RC and IC commonly involve non-compensatory and attribute-based processing. Moreover, prior studies primarily based their findings on outcome data and few have attempted to determine whether RC and IC shared a common decision process at the cognitive computational level.
To fill this gap, the present study adopts a systematic approach to disentangle the exact mechanism of RC and IC. We considered two well-studied behavioral effects, namely, certainty effect of RC and immediacy effect of IC, respectively, and compared their underlying local and holistic process characteristics by using eye-tracking technique. Besides, we employed hierarchical Bayesian modeling to assess whether alternative-or attribute-based models better fit both RC and IC. We designed a 2×2 within-subject paradigm, with the choice task (RC vs. IC) and the construct of decision options (with vs. without certain/immediate option) as factors. Thirty-three postgraduate students participated in our study. As we were particularly interested in two pairs of decision rules, i.e., compensatory/non-compensatory rules and alternative-based/attribute-based rules, we included a series of decision attributes that reflected them, based on the local and holistic process characteristics derived from eye-movement data to test our hypotheses.
Our entire set of analyses aimed to (1) determine whether the decision processes of RC and IC are similar and (2) identify the best computational model that is more suitable for both decisions. For the first aim, results show that RC and IC indeed share comparable decision processes, albeit having a few differences in other aspects. Specifically, RC and IC differ in process characteristics, such as complexity and holistic eye-movement dynamics, and IC is processed in a relatively more deliberate, deeper fashion than RC. However, they are similar in other characteristics, such as search direction, which is more relevant to making decisions. For the second aim, computational modeling of process characteristics suggests that both types of decisions are consistent with non-discounting models. In particular, results of search direction, in light of Bayesian model comparison, reveals that participants are more likely to follow the non-compensatory, attribute-based rule rather than the alternative-based/attribute-based rule when deciding for both RC and IC. Furthermore, different task constructs of decision options, i.e., with or without certain/immediate option, show distinct process characteristics, such as direction, complexity, and depth in both RC and IC.
To conclude, the present study shows that although differences exist between RC and IC, they indeed have shared cognitive mechanisms at the core of the decision processes. In both types of decisions, contrary to classic discounting models, individuals seem not to follow compensatory, attribute-based rules, which undergoes a "weighting and summing" or "delay discounting" process. Instead, they are more likely to use simple heuristic rules hypothesized by non-discounting models. Moreover, when including certain or immediate options, individuals tend to follow less compensatory and non-dominant (neither attribute-based nor alternative-based) rules. In sum, our findings not only provide a theoretical and empirical basis for the establishment of a common framework for RC and IC, but also provide a novel direction for thorough theoretical and methodological comparisons between variant decision tasks.

Key words:risky choice,intertemporal choice,eye-tracking,hierarchical Bayesian modeling,certainty effect,immediacy effect

ReleaseDate:2019-03-01 06:48:09



Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neuro-computational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1, 24-57. doi:10.1162/cpsy_a_00002

Allais, M. (1953). Le comportement de l'homme rationnel devant le risque:Critique des postulats et axioms de l'ecole americaine[Rational man's behavior in face of risk:Critique of the American School's postulates and axioms]. Econometrica Quick Links, 21, 503-546.

Böckenholt, U., & Hynan, L. S. (1994). Caveats on a process-tracing measure and a remedy. Journal of Behavioral Decision Making, 7(2), 103-117. doi:10.1002/bdm.3960070203

Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic:Making choices without trade-offs. Psychological Review, 113(2), 409-432. doi:10.1037/0033-295X.113.2.409

Brandstätter, E., & Körner, C. (2014). Attention in risky choice. Acta Psychologica, 152, 166-176. doi:10.1016/j.actpsy.2014. 08.008

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference:Understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304. doi:10.1177/0049124104268644

Dai, J., & Busemeyer, J. R. (2014). A probabilistic, dynamic, and attribute-wise model of intertemporal choice. Journal of Experimental Psychology:General, 143(4), 1489-1514. doi:10.1037/a0035976

Ericson, K. M. M., White, J. M., Laibson, D. I., & Cohen, J. D. (2015). Money earlier or later? Simple heuristics explain intertemporal choices better than delay discounting does. Psychological Science, 26(6), 826-833. doi:10.1177/0956797615572232

Fiedler, S., & Glöckner, A. (2012). The dynamics of decision making in risky choice:An eye-tracking analysis. Frontiers Psychology, 3, 335. doi:10.3389/fpsyg.2012.00335

Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., & Weber, E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice. Nature Neuroscience, 13(5), 538-539. doi:10.1038/nn.2516

Fisher, G., & Rangel, A. (2013). Intertemporal discount rates are mediated by relative attention. Paper presented at Society for Judgment and Decision Making Annual Conference, Toronto, Canada.

Franco-Watkins, A. M., Mattson, R. E., & Jackson, M. D. (2016). Now or later? Attentional processing and intertemporal choice. Journal of Behavioral Decision Making, 29(2-3), 206-217. doi:10.1002/bdm.1895

Frederick, S., Loewenstein, G., & O'donoghue, T. (2002). Time discounting and time preference:A critical review. Journal of Economic Literature, 40(2), 351-401. doi:10.1257/002205102320161311

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). New York, NY:CRC Press.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457-472. doi:10.1214/ss/1177011136

Glöckner, A., & Herbold, A-K. (2011). An eye-tracking study on information processing in risky decisions:Evidence for compensatory strategies based on automatic processes. Journal of Behavioral Decision Making, 24(1), 71-98. doi:10.1002/bdm.684

Green, L., Myerson, J., & Ostaszewski, P. (1999). Amount of reward has opposite effects on the discounting of delayed and probabilistic outcomes. Journal of Experimental Psychology:Learning, Memory, and Cognition, 25(2), 418-427. doi:10.1037/0278-7393.25.2.418

Green, L., Myerson, J., & Vanderveldt, A. (2014) Delay and probability discounting. In:F. K. McSweeney & E. Murphy (Eds.), Wiley-Blackwell Handbook of Operant and Classical Conditioning (pp. 307-337). Chichester, England:Wiley.

Hardisty, D. J., & Pfeffer, J. (2016). Intertemporal uncertainty avoidance:When the future is uncertain, people prefer the present, and when the present is uncertain, people prefer the future. Management Science, 63(2), 519-527. doi:10.1287/mnsc.2015.2349

Horstmann, N. (2009). How distinct are intuition and deliberation? An eye-tracking analysis of instruction-induced decision modes. Judgment and Decision Making, 4(5), 335-354. doi:10.2139/ssrn.1393729

Hu, C-P., Kong, X-Z., Wagenmakers, E-J., Ly, A., & Peng K-P. (2018). The bayes factor and its implementation in JASP:A pratical primer. 26(6), 951-965. doi:10.3724/SP. J.1042.2018.00951[胡传鹏, 孔祥祯, Wagenmakers, E-J., Ly, A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965.]

JASP Team. (2017). JASP (Version 0.8.2)[Computer software]

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK:Oxford University Press.

Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10(12), 1625-1633. doi:10.1038/nn2007

Kahneman, D., & Tversky, A. (1979). Prospect theory:An analysis of decision under risk. Econometrica, 47(2), 263-291. doi:10.2307/1914185

Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4), 341-350.

Kirby, K. N., & Herrnstein, R. J. (1995). Preference reversals due to myopic discounting of delayed reward. Psychological Science, 6(2), 83-89. doi:10.1111/j.1467-9280.1995.tb00311.x

Konstantinidis, E., van Ravenzwaaij, D., & Newell, B. R. (2017). Exploring the decision dynamics of risky intertemporal choice. Proceedings of the 39th Annual Conference of the Cognitive Science Society, 694-699. Retrieved from https://pdfs.semanticscholar.org/68cb/ebe19485a7c8ed97948ecec6b0aa6fd49e92.pdf

Kuhnen, C. M., & Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 47(5), 763-770. doi:10.1016/j.neuron.2005.08.008

Li, S. (2004). A behavioral choice model when computational ability matters. Applied Intelligence, 20(2), 147-163. doi:10.1023/B:APIN.0000013337.01711.c7

Li, S., Su, Y., & Sun, Y. (2010). The effect of pseudo-immediacy on intertemporal choices. Journal of Risk Research. 13(6), 781-787. doi:10.1080/13669870903551704

Liang., Z-Y., Zhou, L., & Su, Y. (2016, Aug.). The hidden-zero effect in risky choice:An eye-tracking study. Paper presented at the 31th International Congress of Psychology, Yokohama, JAPAN.

Luckman, A., Donkin, C., & Newell, B. R. (2017). Can a single model account for both risky choices and inter-temporal choices? Testing the assumptions underlying models of risky inter-temporal choice. Psychonomic Bulletin & Review, 25, 785-792. doi:10.3758/s13423-017-1330-8

Loewenstein, G., & Prelec, D. (1992). Anomalies in intertemporal choice:Evidence and an interpretation. The Quarterly Journal of Economics, 107(2), 573-597. doi:10.1006/obhd.1996.0028

Ly, A., Verhagen, J., & Wagenmakers, E.-J. (2016a). An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology, 72, 43-55. doi:10.1016/j.jmp.2016.01.003

Ly, A., Verhagen, J., & Wagenmakers, E-J. (2016b). Harold Jeffreys's default Bayes factor hypothesis tests:Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72, 19-32. doi:10.1016/j.jmp. 2015.06.004

Magen, E., Dweck, C., & Gross, J. J. (2008). The hidden-zero effect:Representing a single choice as an extended sequence reduces impulsive choice. Psychological Science, 19(7), 648-649. doi:10.1111/j.1467-9280.2008.02137.x

Marsman, M., & Wagenmakers, E-J. (2017). Bayesian benefits with JASP. European Journal of Developmental Psychology, 14(5), 545-555. doi:10.1080/17405629.2016.1259614

Mazur, J. E. (1987). An adjusting procedure for studying delayed reinforcement. In M. L. Commons, J. E. Mazur, J. A. Nevin, & H. Rachlin (Eds.), Quantitative analyses of behavior:Vol. 5. The effect of delay and of intervening events on reinforcement value (pp. 55-73). Hillsdale, NJ:Erlbaum.

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503-507. doi:10.1126/science.1100907

Myerson, J., Green, L., Hanson, S. J., Holt, D. D., & Estle, S. J. (2003). Discounting delayed and probabilistic rewards:Processes and traits. Journal of Economic Psychology, 24(5), 619-635. doi:10.1016/S0167-4870(03)00005-9

Noton, D., & Stark, L. (1971). Scanpaths in eye movements during pattern perception. Science, 171(3968), 308-311. doi:10.1126/science.171.3968.308

Pascal, B. (1670). Pensées (W. F. Trotter, Trans.). Retrieved Nov. 22, 2018, from https://sourcebooks.fordham.edu/mod/1660pascal-pensees.asp

Rao, L-L., & Li, S. (2011). New paradoxes in intertemporal choice. Judgment and Decision Making, 6(2), 122-129.

Rayner, K. (Ed.) (2013). Eye movements and visual cognition:Scene perception and reading. New York:Springer-Verlag. doi:10.1007/978-1-4612-2852-3

Read, D., Frederick, S., & Scholten, M. (2013). DRIFT:An analysis of outcome framing in intertemporal choice. Journal of Experimental Psychology:Learning, Memory, and Cognition, 39(2), 573-588. doi:10.1037/a0029177

Read, D., Loewenstein G., & Kalyanaraman, S. (1999). Mixing virtue and vice:Combining the immediacy effect and the diversification heuristic. Journal of Behavioral Decision Making, 12(4), 257-273. doi:10.1002/(SICI)1099-0771 (199912)12:4%3C257::AID-BDM327%3E3.0.CO;2-6

Reeck, C., Wall, D., & Johnson, E. J. (2017). Search predicts and changes patience in intertemporal choice. Proceedings of the National Academy of Sciences, 114(45), 11890-11895. doi:10.1073/pnas.1707040114

Rouder, J. N., Speckman, P. L., Sun, D. C., Morey, R. D., & Iverson, G. (2009). Bayesian t-tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225-237. doi:10.3758/PBR.16.2.225

Samuelson, P. A. (1937). A note on measurement of utility. The Review of Economic Studies, 4(2), 155-161.

Scheibehenne, B., & Pachur, T. (2015). Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice. Psychonomic Bulletin & Review, 22(2), 391-407. doi:10.3758/s13423-014-0684-4

Schneider, E., Streicher, B., Lermer, E., Sachs, R., & Frey, D. (2017). Measuring the zero-risk bias:Methodological artefact or decision-making strategy? Zeitschrift für Psychologie, 225, 31-44. doi:10.1027/2151-2604/a000284

Schulte-Mecklenbeck, M., Johnson, J. G., Böckenholt, U., Goldstein, D. G., Russo, J. E., Sullivan, N. J., & Willemsen, M. C. (2017). Process-tracing methods in decision making:On growing up in the 70s. Current Directions in Psychological Science, 26(5), 442-450. doi:10.1177/0963721417708229

Schulte-Mecklenbeck, M., Kühberger, A., Gagl, B., & Hutzler, F. (2017). Inducing thought processes:Bringing process measures and cognitive processes closer together. Journal of Behavioral Decision Making, 30(5), 1001-1013. doi:10.1002/bdm.2007

Scholten, M., & Read, D. (2010). The psychology of intertemporal tradeoffs. Psychological Review, 117(3), 925-944. doi:10.1037/a001

Simon, H. A. (1982). Models of Bounded Rationality:Empirically grounded economic reason. Cambridge, US:MIT Press.

Stewart, N., Hermens, F., & Matthews, W. J. (2015). Eye movements in risky choice. Journal of Behavioral Decision Making, 29(2-3), 116-136. doi:10.1002/bdm.1854

Stevens, J. R. (2011). Mechanisms for decisions about the future. In R. Menzel, & J. Fischer (Eds.) Animal thinking:Contemporary issues in comparative cognition (pp. 93-104). Cambridge, MA:MIT Press.

Stevenson, M. K., Busemeyer, J. R., & Naylor, J. C. (1990). Judgment and decision-making theory. In D. M. Dunnette, & L. M. Hough (Eds.) Handbook of industrial and organizational psychology (pp. 283-374). CA, US:Consulting Psychologists Press.

Su, Y., Rao, L. L., Sun, H. Y., Du, X. L., Li, X., & Li, S. (2013). Is making a risky choice based on a weighting and adding process? An eye-tracking investigation. Journal of Experimental Psychology:Learning, Memory, and Cognition, 39(6), 1765-1780. doi:10.1037/a0032861

Vehtari, A., Gelman, A., & Gabry, J. (2015). Efficient implementation of leave-one-out cross-validation and WAIC for evaluating fitted Bayesian models. ArXiv Preprint ArXiv:1507.04544. doi:1007/s11222-016-9696-4

Vincent, B. T. (2016). Hierarchical Bayesian estimation and hypothesis testing for delay discounting tasks. Behavior Research Methods, 48, 1608-1620. doi:10.3758/s13428-015-0672-2

Wagenmakers, E-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … van Doorn, J. (2018a). Bayesian inference for psychology. Part Ⅱ?:Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58-76. doi:10.3758/s13423-017-1323-7

Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., … Morey, R. D. (2018b). Bayesian inference for psychology. Part I:Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25(1), 35-57. doi:10.3758/s13423-017-1343-3

Wang Z-J., & Li S. (2012). Tests of the integrative model and priority heuristic model from the point of view of choice process:Evidence from an eye-tracking study. Acta Psychologica Sinica, 44(2), 179-198. doi:10.3724/SP.J.1041.2012.00179[汪祚军, 李纾. (2012). 对整合模型和占优启发式模型的检验:基于信息加工过程的眼动研究证据. 心理学报, 44(2), 179-198.]

Weber, B. J., & Chapman, G. B. (2005). The combined effects of risk and time on choice:Does uncertainty eliminate the immediacy effect? Does delay eliminate the certainty effect? Organizational Behavior and Human Decision Processes, 96(2), 104-118. doi:10.1016/j.obhdp.2005.01.001

Weber, B. J., & Huettel, S. A. (2008). The neural substrates of probabilistic and intertemporal decision making. Brain Research, 1234, 104-115. doi:10.1016/j.brainres.2008.07.105

Wei, Z-H., & Li, X. S. (2015). Decision process tracing:Evidence from eye-movement data. Advances in Psychological Science, 23(12), 2029-2041. doi:10.3724/SP.J.1042.2015.02029[魏子晗, 李兴珊. (2015). 决策过程的追踪:基于眼动的证据. 心理科学进展, 23(12), 2029-2041.]

Wu F., Gu Q., Shi Z-H., Gao Z-F., & Shen M-W. (2018). Striding over the "classical statistical inference trap" -Application of Bayes factors in psychological studies. Chinese Journal of Applied Psychology, 24(3), 195-202.[吴凡, 顾全, 施壮华, 高在峰, 沈模卫. (2018). 跳出传统假设检验方法的陷阱——贝叶斯因子在心理学研究领域的应用. 应用心理学, 24(3), 195-202.]

Wu Y., Zhou X-L., & Luo Y-J. (2010). The neuroscience of intertemporal choices and decision-making under risk and uncertainty. Studies of Psychology and Behavior, 8(1), 76-80.[吴燕, 周晓林, 罗跃嘉. (2010). 跨期选择和风险决策的认知神经机制. 心理与行为研究, 8(1), 76-80.]

Zhang, Y-Y., Xu, L-J., Rao, L-L., Zhou, L., Zhou, Y, Jiang, T-Z, Li, S., & Liang, Z-Y. (2016). Gain-loss asymmetry in neural correlates of temporal discounting:An approach-avoidance motivation perspective. Scientific Reports, 6, 31902. doi:10.1038/srep31902

Zhou, L. (2017). Process comparison of risky choice and intertemporal choice:Evidence from eye-tracking method (Unpublished Doctoral dissertation). University of Chinese Academy of Sciences, Beijing, China.[周蕾(2017). 风险决策与跨期决策的过程比较:基于眼动研究的证据 (博士学位论文). 中国科学院大学.]

Zhou, L., Zhang Y-Y., Li S. & Liang, Z-Y. (2018). New paradigms for the old question:Challenge the expectation rule held by risky decision-making theories. Journal of Pacific Rim Psychology, 12, e17. doi:10.1017/prp.2018.4

Zhou, L., Zhang, Y-Y., Wang, Z-J., Rao, L-L., Wang, W., Li, S., Li, X. S., & Liang, Z-Y. (2016). A scanpath analysis of the risky decision-making process. Journal of Behavioral Decision Making. 29(2-3), 169-182. doi:10.1002/bdm.1943