doi:

DOI: 10.3724/SP.J.1041.2019.01187

Acta Psychologica Sinica (心理学报) 2019/51:11 PP.1187-1197

The role of masking stimulation in target recognition processing: Evidence from fNIRS


Abstract:
When our visual system processes target signals, it usually receives large amounts of irrelevant information from the target, leading to a reduction in the visibility of the target. A wealth of research has shown that visual search for target letters against a masking background is largely determined by the masker type. Informational maskers, such as either randomly positioned and oriented letters or randomly distributed letter fragments, induce stronger masking effects on recognition of target letters than the energetic maskers do, such as the random-phase masker (same spectral amplitude composition as the letter masker but with the phase spectrum randomized) or the random-pixel masker (the locations of the letter maskers' pixel amplitudes being randomized). However, the mechanisms under informational masking and those under energetic masking are still unknown.
The current study examined both cortical activities and behavioral performances in the visual search task, which is determined by whether one of four letters presented at four symmetrically-located positions differs from the others under three masking conditions (random pixels, letter fragments, and random letters). Both the oxygenated hemoglobin concentration (HbO) responses in the primary visual cortex (V1) and secondary visual cortex (V2) with a functional near infrared spectroscopy (fNIRS) were recorded. Twenty (4 males, 16 females) healthy adults (mean age:22.5±1.67 years) participated in the experiment. Each masking condition contained 5 blocks, and each block contained 8 trails. There was a resting phase of 20 seconds between the two blocks. Spatial registration methods were applied to localize the cortical regions underneath each channel and to define two regions of interest (ROIs), which are the primary visual cortex (V1) and secondary visual cortex (V2).
The behavioral results showed that the performance of recognizing target letters improved when the masker type shifted from random letters to letter fragments and to random pixels, suggesting that the letter masker interfered the most with performance than the letter fragment and random-pixel maskers. The random-pixel masker caused the least masking effect. The fNIRS results showed that both letter masker and letter-fragment masker produced an increase in cortical oxygen level. Many regions of interest (ROIs), particularly the visual cortex (including V1 and V2), were more activated under the letter or the letter-fragment masking condition compared to the random-pixel masking condition. Moreover, the differences in cortical activation between the masking conditions further suggested that the V1 and V2 are the critical brain regions involved in visual letter search and informational masking of letter recognition.
To summarize, this study used fNIRS to explore the cortex activation patterns of different types of masking on target recognition. The results showed that information masking had much more interference on visual search and caused greater processing loads in primary and secondary visual cortex, compared with energy masking under the same conditions. Furthermore, the differences between letter fragments masking and letters masking are reflected in the activation mode of V1 and V2 regions.

Key words:visual masking,visual research,functional near infrared spectroscopy (fNIRS),parietal-occipital cortices

ReleaseDate:2019-11-12 11:47:55



Breitmeyer, B. G. (2008). Visual masking:Past accomplishments, present status, future developments. Advances in Cognitive Psychology, 3(1-2), 9-20. doi:10. 2478/v10053-008-0010-7

Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., … Cooper, R. J. (2014). Motion artifacts in functional near-infrared spectroscopy:A comparison of motion correction techniques applied to real cognitive data. Neuroimage, 85(1), 181-191. doi:10.1016/j.neuroimage. 2013.04.082

Bonner, M. F., Vesely, L., Price, C., Anderson, C., Richmond, L., Farag, C.,... Grossman, M. (2009). Reversal of the concreteness effect in semantic dementia. Cognitive Neuropsychology, 26(6), 568-579. doi:10.1080/02643290903512305

Cai, T. T., Zhu, H. L., Xu, J., Wu, S. J., Li, X. G., & He, S. L. (2017). Human cortical neural correlates of visual fatigue during binocular depth perception:An fNIRS study. PLoS One, 12(2), 1-16. doi:10.1371/journal.pone.0172426

Calvert, G. A., & Thesen, T. (2004). Multisensory integration:methodological approaches and emerging principles in the human brain. Journal of Physiology-Paris, 98(1-3), 191-205. doi:10.1016/j.jphysparis.2004.03.018

Chen, M. L. (2012). Disparity-Based Binocular Unmasking Effect in Complex Visual Scenes (Master's thesis). Peking University.

[陈明立. (2012). 复杂环境下基于立体视觉的双眼去掩蔽效应(硕士学位论文). 北京大学.]

Chen, M. L., Zhang, C. X., Yang, S. J., Mao, L. H., Tian, Y. H., Huang, T. J., … Li, L. (2012). Stereopsis-Based Binocular Unmasking. Advances in Psychological Science, 20(9), 1355-1363.

[陈明立, 张畅芯, 杨少娟, 毛利华, 田永鸿, 黄铁军, …李量. (2012). 基于双眼视差的立体视觉去掩蔽效应. 心理科学进展, 20(9), 1355-1363.]

Chubb, C., Olzak, L., & Derrington, A. (2001). Second-order processes in vision:introduction. Journal of the Optical Society of America A, 18(9), 2175-2178. doi:10.1364/josaa. 18.002175

Durantin, G., Gagnon, J. -F., Tremblay, S., & Dehais, F. (2014). Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural Brain Research, 259, 16-23. doi:10.1016/j.bbr.2013.10.042

Durantin, G., Scannella, S., Gateau, T., Delorme, A., & Dehais, F. (2016). Processing Functional Near Infrared Spectroscopy Signal with a Kalman Filter to Assess Working Memory during Simulated Flight. Frontiers in human neuroscience, 9, 707. doi:10.3389/fnhum.2015. 00707

Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. F. (2007). Masking Disrupts Reentrant Processing in Human Visual Cortex. Journal of Cognitive Neuroscience, 19(9), 1488-1497. doi:10.1162/jocn.2007.19.9.1488

Gao, Y. Y., Schneider, B., & Li, L. (2017). The effects of the binocular disparity differences between targets and maskers on visual search. Attention, Perception, & Psychophysics, 79(2), 459-472. doi:10.3758/s13414-016-1252-y

Herrmann, M. J., Neueder, D., Troeller, A. K., & Schulz, S. M. (2016). Simultaneous recording of EEG and fNIRS during visuo-spatial and facial expression processing in a dual task paradigm. International Journal of Psychophysiology, 109, 21-28. doi:10.1016/j.ijpsycho.2016.09.013

Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals:a study with a newly developed perfused rat brain model. Journal of Applied Physiology, 90(5), 1657-1662. doi:10.1152/jappl.2001. 90.5.1657

Jang, K. E., Tak, S., Jung, J., Jang, J., Yong, J., & Ye, J. C. (2009). Wavelet minimum description length detrending for near-infrared spectroscopy. Journal of Biomedical Optics, 14(3), 1-13. doi:10.1117/1.3127204

Kok, P., & de Lange, Floris P. (2014). Shape Perception Simultaneously Up-and Downregulates Neural Activity in the Primary Visual Cortex. Current Biology, 24(13), 1531-1535. doi:https://doi.org/10.1016/j.cub.2014.05.042

Lane, C., Kanjlia, S., Richardson, H., Fulton, A., Omaki, A., & Bedny, M. (2017). Reduced Left Lateralization of Language in Congenitally Blind Individuals. Journal of Cognitive Neuroscience, 29(1), 65-78. doi:10.1162/jocn_a_01045

Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology:General, 133(3), 339-354. doi:10.1037/0096-3445.133.3.339

Liu, B. G., Zhou, J., & Li, F. F. (2011). Functional near-infrared spectroscopy:An emerging functional neuroimaging technology. Journal of Psychological Science, 34(4), 943-949.

[刘宝根, 周兢, 李菲菲. (2011). 脑功能成像的新方法——功能性近红外光谱技术(fNIRS). 心理科学, 34(4), 943-949.]

Mattys, S. L., Brooks, J., & Cooke, M. (2009). Recognizing speech under a processing load:dissociating energetic from informational factors. Cognitive Psychology, 59(3), 203-243. doi:10.1016/j.cogpsych.2009.04.001

McIntosh, M. A., Shahani, U., Boulton, R. G., & McCulloch, D. L. (2010). Absolute Quantification of Oxygenated Hemoglobin within the Visual Cortex with Functional Near Infrared Spectroscopy (fNIRS). Investigative Ophthalmology & Visual Science, 51, 4856-4860. doi:10.1167/iovs.09-4940

Noble, W. S. (2009). How does multiple testing correction work? Nature Biotechnology, 27, 1135-1137. doi:10.1038/nbt1209-1135

Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory:Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24(1), 27-45. doi:10.1007/s10648-011-9179-2

Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking:distinguishing feature integration from detection. Journal of Vision, 4(12), 1136-1169. doi:10.1167/4.12.12

Rabaglia, C. D., & Schneider, B. A. (2016). Age-related inhibitory deficit, or lack of familiarity benefit? Evidence from letter identification among visual distractors. Attention, Perception, & Psychophysics, 78(2), 542-565. doi:10.3758/s13414-015-1009-z

Rowland, S. C., Hartley, D. E. H., & Wiggins, I. M. (2018). Listening in naturalistic scenes:What can functional near-infrared spectroscopy and intersubject correlation analysis tell us about the underlying brain activity? Trends in Hearing, 22. doi:10.1177/2331216518804116

Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming:evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage, 19(3), 613-626. doi:10. 1016/s1053-8119(03)00096-x

Tse, P. U., Martinez-Conde, S., Schlegel, A. A., & Macknik, S. L. (2005). Visibility, visual awareness, and visual masking of simple unattended targets are confined to areas in the occipital cortex beyond human V1/V2. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17178-17183. doi:10.1073/pnas. 0508010102

Tsubomi, H., Ikeda, T., Hanakawa, T., Hirose, N., Fukuyama, H., & Osaka, N. (2009). Connectivity and signal intensity in the parieto-occipital cortex predicts top-down attentional effect in visual masking:An fMRI study based on individual differences. Neuroimage, 45(2), 587-597. doi:https://doi.org/10.1016/j.neuroimage.2008.11.028

Ward, L. M., Aitchison, R. T., Tawse, M., Simmers, A. J., & Shahani, U. (2015). Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS. PLoS One, 10, 1-16. doi:10.1371/journal.pone.0125012

Wardle, S. G., Cass, J., Brooks, K. R., & Alais, D. (2010). Breaking camouflage:binocular disparity reduces contrast masking in natural images. Journal of Vision, 10(14), 1-12. doi:10.1167/10.14.38

Wijeakumar, S., Shahani, U., McCulloch, D. L., & Simpson, W. A. (2012). Neural and Vascular Responses to Fused Binocular Stimuli:A VEP and fNIRS Study. Investigative Ophthalmology & Visual Science, 53(9), 5881-5889. doi:10.1167/iovs.12-10399

Wijeakumar, S., Shahani, U., Simpson, W. A., & McCulloch, D. L. (2012). Localization of Hemodynamic Responses to Simple Visual Stimulation:An fNIRS Study. Investigative Ophthalmology & Visual Science, 53(4), 2266-2273. doi:10.1167/iovs.11-8680

Worsley, K. J., Friston, K. J. (1995). Analysis of fMRI time-series revisited-Again. Neuroimage, 2(3), 173-181. doi:10.1006/nimg.1995.1023

Yan, G. L., Bai, X. J., Zang, C. L., Bian, Q., Cui, L., Wei, Q., … Liversedge, S. P. (2012). Using stroke removal to investigate Chinese character identification during reading:Evidence from eye movemwnts. Reading and Writing, 25(5), 951-979. doi:10.1007/s11145-011-9295-x

Yang, Z. G., Zhang, T. T., Song, Y. W., & Li, L. (2014). The subcomponents of informational masking:evidence from behavioral and neural imaging studies. Advances in Psychological Science, 22(3), 400-408.

[杨志刚, 张亭亭, 宋耀武, 李量. (2014). 听觉信息掩蔽的亚成分:基于行为和脑成像研究的证明. 心理科学进展, 22(3), 400-408.]

Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM:Statistical parametric mapping for near-infrared spectroscopy. Neuroimage, 44(2), 428-447. doi:10.1016/j.neuroimage.2008.08.036