DOI: 10.3724/SP.J.1085.2013.00202

Advances in Polar Science 2013/24:4 PP.202-207

A comparative analysis of β-mannanases of bacteria from Antarctica and Malaysia

β-mannanase is an enzyme that is commonly expressed in environmental bacteria.It degrades hemicellulose found in plant material and recycles nutrients back into the environment.Because this enzyme significantly contributes to biodegradation and has recently been applied in industry,we conducted a comparative analysis of bacterial isolates found in soil samples from Schirmacher Oasis,Antarctica,and Sabah,Malaysia that were capable of degrading mannan.A total of 9 bacterial isolates from Antarctica and 30 bacterial isolates from Malaysia exhibitedβ-mannanase activity.These bacteria were differentiated and clustered using their random amplified polymorphic DNA(RAPD)profiles,and theβ-mannanase activity of these isolates was tested at different temperatures and pH.Five out of 9 Antarctica isolates and seven out of 30 Malaysian isolates were identified based on their 16S rDNA sequences.Identified bacterial isolates from Antarctica were:MP1(Bacillus amyloliquefaciens),MP2(Bacillus pumilus),MP5(Bacillus pumilus),A40(Arthrobacter sp.),and C27(Arthrobacter oxydans).Identified bacterial isolates from Malaysia were:Y1(Paenibacillus sp.),Y2(Bacillus sp.),Y16(Paenibacillus sp.),Y18(Paenibacillus sp.),A7(Paenibacillus sp.),B26(Streptomyces sp.),and D4(Paenibacillus amylolyticus).β-mannanases produced by the Antarctica bacterial isolates MP1(Bacillus amyloliquefaciens)and A40(Arthrobacter sp.)were active at 5℃and 20℃,respectively,while theβ-mannanase produced by the bacterial isolate from Malaysia,A7(Paenibacillus sp.),was active at 35℃.

Key words:Antarctic regions,guar gum,locust bean gum,hemicellulose and hemicellulase

ReleaseDate:2015-04-16 13:27:15

1 Ethier N, Talbot Q Sygusch J. Gene cloning, DNA sequencing, and expression of thermostable β-β-mannanase from Bacillus stearothermophi-lus. Appl Environ Microbiol, 1998, 64: 4428-4432.

2 Stoll D, Stalbrand H, Warren R A J. Mannan-degrading enzymes from Cellulomonas fimi. Appl Environ Microbiol, 1999, 65(6): 2598-2605.

3 Marga F, Ghakis C, Dupont C, et al. Improved production of β-mannanase by Streptomyces lividans. Appl Environ Microbiol, 1996, 62: 4656-4658.

4 Filichkin S A, Leonard J M, Monteros A, et al. A novel endo-β-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physio, 2004, 134(3): 1080-1087.

5 Bhat M K. Cellulases and related enzymes in biotechnology. Biotechnol Adv, 2000, 18(5): 355-383.

6 Sachslehner A, Foidl G, Foidl N, et al. Hydrolysis of isolated coffee man-nan and coffee extract by mannanases of Sclerotium rolfsii. J Biotech, 2000, 80(2): 127-134.

7 Clarke J H, Davidson K, Rixon J E, et al. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, β-mannanase and α-galactosidase. Appl Microbiol Biotech, 2000, 53(6): 661-667.

8 McCoy M. Soaps and detergents. Chemical and Engineering News, 2001, 20: 19-32.

9 Wu G, Bryant M M, Voitle R A, et al. Effects of β-mannanase in corn-soy diets on commercial leghorns in second-cycle hens. Poultry Sci, 2005, 84(6): 894-897.

10 Mendoza N S, Arai M, Kawaguchi T, et al. Isolation of mannan-utilizing bacteria and the culture conditions for β-mannanase production. World J Microbiol Biotechn, 1994, 10(1): 51-54.

11 Zakaria M M, Ashiuchi M, Yamamoto S, et al. Optimization for β-mannanase production of a psychrophilic bacterium, Flavobacterium sp. Biosci Biotech Biochem, 1998, 62(4): 655-660.

12 Abe J, Hossain M Z, Hizukuri S. Isolation of β-mannanase-producing microorganism. J Ferment Bioeng, 1994, 78(3): 259-261.

13 Fülöp L, Ponyi T. Rapid screening for endo-β-1, 4-glucanase and endo-β-1, 4-mannanase activities and specific measurement using soluble dye-labeled substrates. J Microbiol Methods, 1997, 29(1): 15-21.

14 Michaud L, Di Cello F, Brilli M, et al. Biodiversity of cultivable psychro-trophic marine bacteria isolated from Terra Nova Bay (Ross Sea, Antarctica). FEMS Microbiol Lett, 2004, 230(1): 63-71.

15 Vaquero I, Marcobal A, Munoz R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Intl J Food Microbiol, 2004, 96(2):199-204.

16 Altschul S F, Madden, T L , Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25(17): 3389-3402.

17 Stalbrand H, Suzuki H, Sugiyama N, et al. Purification and characterization of two β-mannanases from Trichoderma reesei. J Biotech, 1975, 29(3): 229-242.

18 Senesi S, Celandroni F, Salvetti S, et al. Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology, 2002, 148(6): 1785-1794.

19 O'Brien A, Sharp R, Russell N J, et al. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Eco, 2004, 48(2): 157-167.

20 Shivaji S, Chattopadhyay M K, Ray M K. Bacteria and yeasts of Schir-macher Oasis, Antarctica: Taxonomy, biochemistry and molecular biology. Proc NIPR Symp Polar Biol, 1994, 7: 173-184.

21 Valentine P J, Salyers A A. Analysis of proteins associated with growth of Bacteroides ovatus on the branched galactomannan guar gum. Appl Environ Microbiol, 1992, 58: 1534-1540.

22 Ruijssenaars H J, Hartmans S. Plate screening methods for the detection of polysaccharides-producing microorganisms. Appl Microbiol Biotech,2001, 55(2): 143-149.

23 Doi R H, Kosugi A, Murashima K, et al. Cellulosomes from mesophilic bacteria. J Bacteriol, 2003, 185(20): 5907-5914.

24 Ma Y H, Xue Y F, Dou Y T, et al. Characterization and gene cloning of a novel β-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles, 2004, 8(6): 447-454.

25 Cho K M, Hong S Y, Lee S M, et al. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol, 2006, 73(3): 618-630.

26 Lee J, Yoon K. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. International J Syst Evol Microbiol, 2008, 58(Pt3): 612-616.

27 Kataoka N, Tokiwa Y. Isolation and characterization of an active β-mannanase-producing anaerobic bacterium, Clostridium tertium KT-5A, from lotus soil. J Appl Microbiol, 1998, 84(3): 357-367.

28 Blechschmidt D, Gohr C, Troger R. Arthrobacter globiformis-a new yest-lysing bacterium. Zeitschrift fur Allgemeine Mikrobiologie, 1982, 22(7): 443-451.

29 Latzko F, Hampel W. Enzyme formation by a yeast cell wall lytic Arthro-bacter species: chitinolytic activity. Appl Microbiol Biotech, 1995, 44(1-2): 185-189.