doi:

DOI: 10.3724/SP.J.1085.2013.00213

Advances in Polar Science 2013/24:4 PP.213-222

Phenotypic plasticity in Bacillus cereus strains isolated from various Antarctic habitats


Abstract:
We studied five strains of psychrotolerant Bacillus cereus(B.cereus)isolated from Antarctic snow(BCsn),ice(BCic),lake water(BCwr),sediment(BCsd),and soil(BCsl)samples in terms of their growth,biochemical properties,and heat shock responses.Analyses of growth kinetics at 4℃showed that BCsn had the fastest generation time(16.1 h),whereas BCwr had the slowest(30.8 h).Strain BCsd formed the largest zone of lipid hydrolysis(18 mm)whereas BCsn formed the smallest zone(3 mm).Only BCsd produced gelatinase.These physiological differences illustrate adaptations of B.cereus isolates to different niches.Strains BCsl and BCwr were resistant to all 12 of the antibiotics tested.Strains BCsn,BCsn,and BCsd were resistant to cell wall synthesis inhibitors(penicillin and ampicillin)and susceptible to protein synthesis inhibitors(tetracycline and streptomycin).A carbon-substrate utilization assay revealed that BCic,BCic,and BCwr could specifically utilize D-glucose-6-phosphate,salicin,and 2'-deoxyadenosine,respectively,indicating a degree of metabolic diversity among these Antarctic B.cereus strains.An analysis of heat shock proteins(HSPs)produced in response to a 60℃heat treatment revealed significant variations in the amounts of HSP33(p=0.01,df=4),HSP44(p=0.003,df=4),and HSP60(p=0.04,df=4)among the strains.This emphasizes the importance of HSPs in bacterial taxonomy.These results show that there are considerable adaptive variations among B.cereus strains from extremophilic environments.This could be significant in evaluating the taxonomy and evolution of this species.

Key words:Bacillus cereus,Antarctica,phenotype,heat shock protein,carbon utilization

ReleaseDate:2015-04-16 13:27:15



1 Yergeau E, Bokhorst S, Huiskes A H L, et al. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol, 2007, 59(2): 436-451.

2 Yergeau E, Kang S, He Z L, et al. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J, 2007, 1(2): 163-179.

3 Yergeau E, Newsham K K, Pearce D A, et al. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol,2007, 9(11): 2670-2682.

4 Franzmann P D, Deprez P P, McGuire A J, et al. The heterotrophic, bacterial microbiota of Burton lake, Antarctica. Polar Biol, 1990, 10(4): 261-264.

5 Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol, 2011, 162(3): 346-361.

6 Shivaji S, Rao N S, Saisree L, et al. Isolation and identification of Pseu-domonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol, 1989, 55(3): 767-70.

7 Shivaji S, Ray M K, Kumar G S, et al. Identification of Janthinobacte-rium lividum from the soils of the islands of Scotia Ridge and from Antarctic peninsula. Polar Biol, 1991, 11(4): 267-271.

8 Shivaji S, Ray M K, Rao N S, et al. Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bact, 1992, 42(1): 102-106.

9 Dobson S J, Colwell R R, Franzmann P D, et al. Direct sequencing of the Polymerase Chain Reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. (ACAM 44T = DSM 5425T), and Flavobacterium salegens sp. nov. (ACAM 48T = DSM 5424T), new species from a hypersaline Antarctic lake. Int J Syst Bact, 1993, 43(1): 77-83.

10 Fox G E, Wisotzkey J D, Jurtshuk Jr P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bact, 1992, 42(1): 166-170.

11 Antony R, Krishnan K P, Thomas S, et al. Phenotypic and molecular identification of Cellulosimicrobium cellulans isolated from Antarctic snow. Ant Van Leeu, 2009, 96(4): 627-634.

12 Olsen G J, Woese C R, Overbeek R. The winds of (evolutionary) change: breathing new life into Microbiology. J Bacteriol, 1994, 176(1): 1-6.

13 Stackebrandt E, Rainey F A, Ward-Rainey N L. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacte-riol, 1997, 47(2): 479-491.

14 Goh S H, Potter S, Wood J O, et al. HSP60 gene sequences as universal targets for microbial species identification: studies with coagu-lase-negative staphylococci. J Clin Microbiol, 1996, 34(4): 818-823.

15 Kwok A Y C, Su S-C, Reynold R P, et al. Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol, 1999, 49(3): 1181-1192.

16 Sinha R K, Krishnan K P, Sarkar A. Heat shock response as a cue for phenotypic variability: A study of psychrotrophic and mesophilic strains of Cellulosimicrobium cellulans. Ann Microbiol, 2012, 62(4): 1565-1572, doi: 10.1007/s13213-011-0411-6.

17 Von Stetten F, Mayr R, Scherer S. Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ Microbiol, 1999, 1(6): 503-515.

18 Guinebretiere M-H, Thompson F L, Sorokin A, et al. Ecological diversification in the Bacillus cereus Group. Environ Microbiol, 2008, 10(4): 851-865.

19 Ausubel F M, Brent R, Kingston R E, et al. Short protocols in molecular biology, 3rd edn. New York: Wiley, 1995.

20 Hicks R E, Amann R I, Stahl D A. Dual staining of natural bacterioplank-ton with 4,, 6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol, 1992, 58(7): 2158-2163.

21 Atlas R M, Snyder J W. Handbook of media for clinical microbiology, 2nd edn. Florida: CRC Press, 2006.

22 Booth C. Introduction to general methods//Booth C. Methods in microbiology. New York: Academic Press, 1978: 57-91.

23 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Biochem, 1976, 72(1-2): 248-254.

24 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259): 680-685.

25 Russell N J, Harrisson P, Johnston I A, et al. Cold adaptation of microorganisms [and discussion]. Philos Trans R Soc Lond, 1990, 326(1237): 595-611.

26 Gounot A M. Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bact, 1991, 71(5): 386-397.

27 Gounot A M, Russell N J. Physiology of cold-adapted microorganisms // Margesin R, Schinner F. Biology of cold-adapted organisms. Berlin, Heidelberg: Springer Verlag, 1999: 3-15.

28 Harder W, Veldkamp H. Competition of marine psychrophilic bacteria at low temperatures. Anton van Leeuw, 1971, 37(1): 51-63.

29 Nedwell D B, Rutter M. Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: low temperature diminishes affinity for substrate uptake. Appl Environ Microbiol, 1994, 60(6): 1984-1992.

30 Frankland G C, Frankland P F. Studies on Some New Micro-Organisms Obtained from Air. Philos Trans Roy Soc Lond B, 1887, 178: 257-287.

31 Shivaji S, Kumari K, Kishore K H, et al. Vertical distribution of bacteria in a lake sediment from Antarctica by culture-independent and culture-dependent approaches. Res Microbiol, 2011, 162(2): 191-203.

32 Ramana K V, Singh L, Saxena N. Psychrotrophic hydrolytic bacteria from Antarctica and other low temperature habitats. Defence Sci J, 2000, 50: 77-82.

33 Hoppe H G, Giesenhagen H C, Gocke K. Changing patterns of bacterial substrate decomposition in a eutrophication gradient. Aquat Microb Ecol,1998, 15(1): 1-13.

34 Velusamy V, Arshak K, Korostynska O, et al. Design of a real time biorecognition system to detect foodborne pathogens-DNA Biosensor // IEEE Sensors Applications Symposium. New Orleans, LA, USA: IEEE, 2009: 38-42.

35 Das S, Surendran P K, Thampuran N K. PCR-based detection of enterotoxigenic isolates of Bacillus cereus from tropical seafood. Indian J Med Res, 2009, 129(3): 316-320.

36 Lambert P A. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J App Microbiol, 2002, 92(Suppl 1): 46S-54S.

37 De Souza M J, Nair S, Loka Bharathi P A, et al. Metal and antibi-otic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology, 2006, 15(4): 379-384.

38 Aronson R B, Thatje S, McClintock J B, et al. Anthropogenic impacts on marine ecosystems in Antarctica. Ann NY Acad Sci, 2011, 1223(1): 82-107.

39 Amblard C. Carbon heterotrophic activity of microalgae and cyanobacteria: ecophysiological significance. L5Annee Biologique, 1991, 30: 73-107.

40 Antony R, Mahalinganathan K, Krishnan K P, et al. Microbial preference for different size classes of organic carbon: a study from Antarctic snow. Environ Monit Assess, 2011, 184(10): 5929-5943, doi: 10.1007/ s10661-011-2391-1.

41 Faure D, Jos D, Keijers V, et al. Growth of Azospirillum irakense KBC1 on the Aryl P-Glucoside Salicin Requires either salA or salB. J Bacteriol,1999, 181(10): 3003-3009.

42 Desai S K, Nandimath K, Mahadevan S. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Arch Microbiol, 2010, 192(10): 821-833.

43 Siuda W, Chrost R J. Utilization of selected dissolved organic phosphorus compounds by bacteria in lake water under non-limiting orthophosphate conditions. J Environ Stud, 2001, 10(6): 475-483.

44 Yocis B H, Kieber D J, Mopper K. Photochemical production of hydrogen peroxide in Antarctic Waters. Deep Sea Res, 2000, 47(6): 1077-1099.

45 Gouffi K, Pica N, Pichereau V, et al. Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl Environ Microbiol, 1999, 65(4): 1491-1500.

46 Chun S-H, Schneider R W, Chung I-M. Determination of carbon source utilization of Bacillus and Pythium species by biolog? microplate assay. The J Micrbiol, 2003, 41(3): 252-258.

47 Boorstein W R, Ziegelhoffer T, Craig E A. Molecular evolution of the HSP70 multigene family. J Mol Evol, 1994, 38(1): 1-17.

48 Bustard K, Gupta R S. The sequences of heat shock protein 40 (DnaJ) homologs provide evidence for a close evolutionary relationship between the Deinococcus-Thermus group and cyanobacteria. J Mol Evol, 1997, 45(2): 193-205.

49 Gupta R S. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationships among animals, plants, and fungi species. Mol Biol Evol, 1995, 12(6): 1063-1073.

50 Gupta R S. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev, 1998, 62(4): 1435-1491.

51 Jakob U, Muse W, Eser M, et al. Chaperone Activity with a Redox Switch. Cell, 1999, 96(3): 341-352.

52 Bandyopadhyay K, Parua P K, Datta A B, et al. Studies on Escherichia coli HflKC suggest the presence of an unidentified 入 factor that influences the lysis-lysogeny switch. BMC Microbiol, 2011, 11: 34.

53 Brissette J L, Weiner L, Ripmaster T, et al. Characterization and sequence of the Escherichia coli stress-induced psp operon. Mol Biol, 1991, 220(1): 35-48.