DOI: 10.3724/SP.J.1085.2013.00231

Advances in Polar Science 2013/24:4 PP.231-240

Analysis software for upper atmospheric data developed by the IUGONET project and its application to polar science

To comprehensively understand the Arctic and Antarctic upper atmosphere,it is often crucial to analyze various data that are obtained from many regions.Infrastructure that promotes such interdisciplinary studies on the upper atmosphere has been developed by a Japanese inter-university project called the Inter-university Upper atmosphere Global Observation Network(IUGONET).The objective of this paper is to describe the infrastructure and tools developed by IUGONET.We focus on the data analysis software.It is written in Interactive Data Language(IDL)and is a plug-in for the THEMIS Data Analysis Software suite(TDAS),which is a set of IDL libraries used to visualize and analyze satellite-and ground-based data.We present plots of upper atmospheric data provided by IUGONET as examples of applications,and verify the usefulness of the software in the study of polar science.We discuss IUGONET's new and unique developments,i.e.,an executable file of TDAS that can run on the IDL Virtual Machine,IDL routines to retrieve metadata from the IUGONET database,and an archive of 3-D simulation data that uses the Common Data Format so that it can easily be used with TDAS.

Key words:data analysis software,metadata database,upper atmosphere,ground-based observation,polar science,interdisciplinary study,IUGONET

ReleaseDate:2015-04-16 13:27:16

1 Akmaev R A, Fomichev V I. Cooling of the mesosphere and lower thermosphere due to doubling of CO2. Ann Geophys, 1998, 16: 1501-1512, doi: 10.1007/s00585-998-1501-z.

2 Kodera K. Influence of stratospheric sudden warming on the equatorial troposphere. Geophys Res Lett, 2006, 33(6): L06804, doi: 10.1029/2005 GL024510.

3 Goncharenko L, Zhang S R. Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys Res Lett,2008, 35(21): L21103, doi: 10.1029/2008GL035684.

4 Chau J L, Fejer B G, Goncharenko L P. Quiet variability of equatorial E x B drifts during a sudden stratospheric warming event. Geophys Res Lett,2009, 36(5): L05101, doi: 10.1029/2008GL036785.

5 Yamazaki Y, Richmond A D, Liu H X, et al. Sq current system during stratospheric sudden warming events in 2006 and 2009. J Geophys Res, 2012, 117(A12): A12313, doi: 10.1029/2012JA018116.

6 Callis L B, Boughner R E, Baker D N, et al. Precipitating electrons: Evidence for effects on mesospheric odd nitrogen. Geophys Res Lett, 1996, 23(15): 1901-1904.

7 Callis L B, Lambeth J D. NOy formed by precipitating electron events in 1991 and 1992: Descent into the stratosphere as observed by ISAMS. Geophys Res Lett, 1998, 25(11): 1875-1878.

8 Randall C E, Harvey V L, Singleton C S, et al. Stratospheric effects of energetic particle precipitation in 2003-2004. Geophys Res Lett, 2005, 32(5): L05802, doi: 10.1029/2004GL022003.

9 Hayashi H, Koyama Y, Hori T, et al. Inter-university Upper Atmosphere Global Observation Network (IUGONET). Data Sci J, 2013, 12: WDS179-WDS184, doi: 10.2481/dsj.WDS-030.

10 Angelopoulos V. The THEMIS mission. Space Sci Rev, 2008, 141(1-4): 5-34, doi: 10.1007/s11214-008-9336-l.

11 Miyoshi Y, Ono T, Takashima T, et al. The energization and radiation in geospace (ERG) project // Dynamics of the earth's radiation belts and inner magnetosphere. AGU Monogr Ser. Washington, DC: AGU, 2012, 199: 103-116, doi: 10.1029/2012GM001304.

12 Hamaguchi R. A study on development of statistical analysis system for variations of atmospheric environment, Graduate School of Informatics, Master Thesis, Kyoto University, 2013.

13 Thieman J R, Roberts D A, King T A, et al. SPASE and the Heliophysics Virtual Observatories. Data Sci J, 2010, 9: IGY85-IGY93, doi: 10.2481/ dsj.SS—IGY-019.

14 King T, Thieman J, Roberts D A. SPASE 2.0: a standard data model for space physics. Earth Sci Inform, 2010, 3(1-2): 67-73, doi: 10.1007/ s12145-010-0053-4.

15 Miyoshi Y, Fujiwara H. Day-to-day variations of migrating diurnal tide simulated by a GCM from the ground surface to the exobase. Geophys Res Lett, 2003, 30(15): 1789, doi: 10.1029/2003GL017695.

16 Wannberg G, Wolf I, Vanhainen L-G, et al. The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design. Radio Sci, 1997, 32(6): 2283.

17 Ogawa Y, Kadokura A, Motoba T, et al. Processing and visualization of large amounts of auroral data obtained with All-sky/Narrow field-of-view parallel imagers in Tromso and Longyearbyen. J Space Sci Inform Japan, 2013, 2: 51-61 (in Japanese).

18 King J H, Papitashvili N E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J Geophys Res, 2005, 110(A2): A02209, doi: 10.1029/2004JA010804.

19 Iyemori T. Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J Geomag Geoelectr, 1990, 42(11): 12491265, doi: 10.5636/jgg.42.1249.

20 Iyemori T, Rao D R K. Decay of the dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation. Ann Geophys, 1996, 14(6): 608-618, doi: 10.1007/s00585-996-0608-3.

21 Tsutsumi M, Aso T, Ejiri M. Initial results of Syowa MF radar observations in Antarctica. Adv Polar Upper Atmos Res, 2001, (15): 103-116.

22 Venkateswara R N, Tsuda T, Gurubaran S, et al. On the occurrence and variability of the terdiurnal tide in the equatorial mesosphere and lower thermosphere and a comparison with the Kyushu-GCM. J Geophys Res, 2011, 116(D2): D02117, doi: 10.1029/2010JD014529.

23 Blanc M, Richmond A D. The ionospheric disturbance dynamo. J Geophys Res, 1980, 85(A4): 1669-1686.

24 Zaka K Z, Kobea A T, Doumbia V, et al. Simulation of electric field and current during the 11 June 1993 disturbance dynamo event: Comparison with the observations. J Geophys Res, 2010, 115(A11): doi: 10.1029/ 2010JA015417.

25 Hall C M, Aso T, Tsutsumi M, et al. A comparison of mesosphere and lower thermosphere neutral winds as determined by meteor and me-dium-frequency radar at 70°N. Radio Sci, 2005, 40(4), doi: 10.1029/ 2004RS003102.

26 Tomikawa Y. Persistence of easterly wind during major stratospheric sudden warmings. J Climate, 2010, 23(19): 5258-5267.

27 Kurihara J, Ogawa Y, Oyama S, et al. Links between a stratospheric sudden warming and thermal structures and dynamics in the high-latitude mesosphere, lower thermosphere, and ionosphere. Geophys Res Lett, 2010, 37(13): L13806, doi: 10.1029/2010GL043643.