doi:

DOI: 10.3724/SP.J.1085.2013.00241

Advances in Polar Science 2013/24:4 PP.241-247

VHF meteor radar at King Sejong Station,Antarctica


Abstract:
Since 2002,we have been observing the mesosphere and lower thermosphere(MLT)region over King Sejong Station(KSS;62.22°S,58.78°W),Antarctica,using various instruments such as the Spectral Airglow Temperature Imager(SATI),All Sky Camera(ASC)and VHF meteor radar.The meteor radar,installed in March 2007,continuously measures neutral winds in the altitude region 70-110 km and neutral temperature near the mesopause 24 h·d-1,regardless of weather conditions.In this study,we present results of an analysis of the neutral wind data for gravity wave activity over the tip of the Antarctic Peninsula,where such activity is known to be very high.Also presented is temperature estimation from measurement of the decay times of meteor trails,which is compared with other temperature measurements from SATI and the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument onboard the Thermosphere Ionosphere Mesosphere Energy and Dynamics(TIMED)satellite.

Key words:meteor radar,gravity wave,mesosphere and lower thermosphere region,Antarctica

ReleaseDate:2015-04-16 13:27:16



1 Holton J R. The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci, 1983, 40(10): 2497-2507.

2 Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys, 2003, 41(1), doi: 10.1029/2001RG000106.

3 Dowdy A J, Vincent R A, Tsutsumi M, et al. Polar mesosphere and lower thermosphere dynamics: 1. Mean wind and gravity wave climatologies. J Geophys Res, 2007, 112(D17104), doi: 10.1029/2006JD008126.

4 Beldon C L, Mitchell N J. Gravity waves in the mesopause region observed by meteor radar, 2: Climatologies of gravity waves in the Antarctic and Arctic. J Atmos Sol-Terr Phy, 2009, 71(8-9): 875-884.

5 Placke M, Stober G, Jacobi C. Gravity wave momentum fluxes in the MLT-Part I: Seasonal variation at Collm (51.31 °N, 13.01 °E). J Atmos Sol-Terr Phy, 2010, 73(9): 904-910.

6 Chilson P B, Czechowsky P, Schmidt G A comparison of ambipolar diifu-sion coefficients in meteor trains using VHF radar and UV lidar. Geophys Res Lett, 1996, 23(20): 2745-2748.

7 Hocking W K, Thayaparan T, Jones J. Meteor decay times and their use in determining a diagnostic mesospheric temperature-pressure parameter: methodology and one year of data. Geophys Res Lett, 1997, 24(23): 2977-2980.

8 Hocking W K. Temperatures using radar-meteor decay times. Geophys Res Lett, 1999, 26(21): 3297-3300.

9 Cervera M A, Reid I M. Comparison of atmospheric parameters derived from meteor observations with CIRA. Radio Sci, 2000, 35(3): 833-843.

10 Hocking W K, Singer W, Bremer J, et al. Meteor radar temperatures at multiple sites derived with SKiYMET radars and compared to OH, rocket and lidar measurements. J Atmos Sol-Terr Phy, 2004, 66(6-9): 585-593.

11 Holdsworth D A, Morris R J, Murphy D J, et al. Antarctic mesospheric temperature estimation using the Davis mesosphere-stratosphere-troposphere radar. J Geophys Res, 2006, 111(D05108), doi: 10.1029/2005 JD006589.

12 Kumar K K. Temperature profiles in the MLT region using radar-meteor trail decay times: Comparison with TIMED/SABER observations. Geophys Res Lett, 2007, 34(L16811), doi: 10.1029/2007GL030704.

13 Kim J H, Kim Y H, Lee C-S, et al. Seasonal variation of meteor decay times observed at King Sejong Station (62.22°S, 58.78°W), Antarctica. J Atmos Sol-Terr Phy, 2010, 72: 883-889.

14 Kim J H, Kim Y H, Jee G, et al. Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails. J Atmos Sol-Terr Phy, 2012, 89: 18-26.

15 Baumgaertner A J G, McDonald A J. A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations. J Geophys Res, 2007, 112(D05103), doi: 10.1029/2006JD007504.

16 Lee C S, Younger J P, Reid I M, et al. The effect of recombination and attachment on meteor radar diffusion coefficient profiles. J Geophys Res: Atmos, 2013, 118(7): 3037-3043.

17 Holdsworth D A, Reid I M, Cervera M A. Buckland Park all-sky inter-ferometric meteor radar. Radio Sci, 2004, 39(RS5009), doi: 10.1029/2003RS003014.

18 Holdsworth D A, Murphy D J, Reid I M, et al. Antarctic meteor observations using the Davis MST and meteor radars. Adv Space Res, 2008, 42(1): 143-154.

19 Mitchell N J, Beldon C L. Gravity waves in the mesopause region observed by meteor radar: 1. A simple measurement technique. J Atmos Sol-Terr Phy, 2009, 71(8-9): 866-874.

20 Yoshiki M, Kizu N, Sato K. Energy enhancements of gravity waves in the Antarctic lower stratosphere associated with variations in the polar vortex and tropospheric disturbances. J Geophys Res, 2004, 109(D23104), doi: 10.1029/2004JD004870.

21 Smith A K. Physics and chemistry of the mesopause region. J Atmos Sol-Terr Phy, 2004, 66(10): 839-857.

22 Fritts D C, Vadas S L, Wan K, et al. Mean and variable forcing of the middle atmosphere by gravity waves. J Atmos Sol-Terr Phy, 2006, 68(3-5): 247-265.

23 Whiteway J A, Duck T J, Donovan D P, et al. Measurements of gravity wave activity within and around the Arctic stratospheric vortex. Geophys Res Lett, 1997, 24(11): 1387-1390.

24 Singer W, Latteck R, Millan L F, et al. Radar backscatter from underdense meteors and diffusion rates. Earth Moon Planet, 2008, 102(1-4): 403-409.

25 Younger J P, Reid I M, Vincent R A, et al. Modeling and observing the effect of aerosols on meteor radar measurements of the atmosphere. Geo-phys Res Lett, 2008, 35(L15812), doi: 10.1029/2008GL033763.

26 Ballinger A P, Chilson P B, Palmer R D, et al. On the validity of the ambipolar diffusion assumption in the polar mesopause region. Ann Geophys, 2008, 26(11): 3439-3443.

27 Friedrich M, Torkar K M, Steiner R J. Empirical recombination rates in the lower ionosphere. Adv Space Res, 2004, 34 (9): 1937-1942.

28 Hocking W K, Thayaparan T, Franke S J. Method for statistical comparison of geophysical data by multiple instruments which have differing accuracies. Adv Space Res, 2001, 27(6-7): 1089-1098.

29 Singer W, Bremer J, Hocking W K, et al. Temperature and wind tides around the summer mesopause at middle and arctic latitudes. Adv Space Res, 2003, 31(9): 2055-2060.

30 Singer W, Bremer J, Weip J, et al. Meteor radar observations at middle and Arctic latitudes Part 1: mean temperatures. J Atmos Sol-Terr Phy, 2004, 66(6-9): 607-616.

31 Stober G, Jacobi Ch, Frohlich K, et al. Meteor radar temperatures over Collm (51.3°N, 13°E). Adv Space Res, 2008, 42(7): 1253-1258.

32 Alexander M J, Teitelbaum H. Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula. J Geophys Res, 2007, 112(D21103), doi: 10.1029/2006JD008368.