DOI: 10.3724/SP.J.1085.2013.00273

Advances in Polar Science 2013/24:4 PP.273-280

Spatial variability of soil nutrients in Punta Fort William,Greenwich Island,maritime Antarctic

This study aims to report baseline soil nutrients,specifically the organic carbon,nitrogen and phosphorus profile,in soil samples collected from Punta Fort William on Greenwich Island in maritime Antarctic.Samples were collected along two transect lines during the early summer of 2008.Ward's method of hierarchical agglomerative clustering was employed to group the sampling points based on their physico-chemical properties.In this context,the soil samples can be grouped into three major clusters:(1)Samples with intensive biological activities,(2)samples from the area recently exposed by glacial retreat and(3)samples from barren and dried areas.Nutrient contents in Punta Fort William are driven by the intensity of biological activities as well as melt water from the Quito glacier.

Key words:soil nutrients,Antarctic,nitrogen,phosphorus,South Shetland Islands

ReleaseDate:2015-04-16 13:27:17

1 Jacobs S S, Gordon A L, Amos A F. Effect of glacial ice melting on the Antarctic surface water. Nature, 1979, 277: 469-471.

2 Barett J E, Virgina R A, Lyons W B, et al. Biogeochemistry stoichiometry of Antarctic dry valley ecosystems. Journal of Geophysical Research, 2007, 12: G01010, doi: 10.1029/2005JG000141.

3 Ligeza S, Smal H. Accumulation of nutrients in soils affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements. Chemosphere, 2003, 52(3): 595-602, doi: 10.1016/S0045-6535(03)00241-8.

4 Magalhães C, Stevens M I, Cary S C, et al. At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica. PLoS ONE, 2012, 7(9): e44578, doi: 10.371/journal. pone.0044578.

5 Hopkins D W, Sparrow A D, Elberling B, et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biology and Biochemistry, 2006, 38(10): 3130-3140, doi: 10.1016/j.soilbio.2006.01.012.

6 Treiber de E B, Arcos F. Cianobacterias en sustratos terrestres de Punta Fort William, Isla Greenwich, Shetland del sur, Antartida. Acta Antartica Ecuatoriana, 1993, 3(1): 55-58.

7 Hii Y S, Alias S A, Hussin A, et al. Surface coverage and some soil chemicals properties at Punta Fort William, Greenwich Island, Antarctica. ASM Science Journal, 2009, 3(2): 143-152.

8 Ordoóñez N, Hii Y S, Alias S A, et al. Estudio preliminar de la cobertura superficial en la Isla Greenwich, Antartida. Revista Tecnologica ESPOL, 2008, 21(1) : 17-21.

9 Wilcox C D, Dove S B, Doss-McDavid W, et al. UTHSCSA ImageTool Ver. 1.27. San Antonio: University of Texas Health Science Center, 1997.

10 Simas F N B, Schaefer C E G R, Mendon§a E S, et al. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica// Antarctica: A Keystone in a Changing World-Online Proceedings of the 10th International Symposium on Antarctic Earth Sciences, USGS Open-File Report 2007-1047, Short Research Paper 076, 2007.

11 Maynard D G, Kalra Y P, Crumbaugh J A. Nitrate and exchangeable ammonium nitrogen//Carter M R, Gregorich E G. Soil sampling and methods of analysis. 2nd edn. Ottawa: Canadian Society of Soil Science, 2007: 71-80.

12 Rutherford P M, McGill W B, Arocena J M, et al. Total nitrogen//Carter M R, Gregorich E G. Soil sampling and methods of analysis. 2nd edn. Ottawa: Canadian Society of Soil Science, 2007: 239-250.

13 Kuo S. Phosphorus//Sparks D L, Page A L, Helmke P A, et al. Methods of soil analysis. Part 3. Chemical Methods. Madison: American Society of Agronomy-Soil Science Society of America, 1996: 869-919.

14 Zhang H, Kovar J L. Phosphorus fractionation// Pierzynski G M. Methods of phosphorus analysis for soils, sediments, residuals, and waters. Southern Coop. Series Bull. #396. Raleigh: North Carolina State University, 2000: 50-59.

15 Rodriguez J B, Self J R, Soltanpour P N. Optimal conditions for phosphorus analysis by the ascorbic acid-molybdenum blue method. Soil Science Society of American Journal, 1994, 58: 866-870, doi: 10.2136/sssaj 1994.03615995005800030034x.

16 Peat H J, Clarke A, Convey P. Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 2007, 34: 132-146, doi: 10.1111/j.1365-2699.2006.01565.x.

17 Bölter M. Soil development and soil biology on King George Island, Maritime Antarctic. Polish Polar Research, 2011, 32(2): 105-116, doi: 10.2478/v10183-011-0002-z.

18 Santana E, Dumont J F. Granulometry of pebble beach ridges in Fort William Point, Greenwich Island, Antarcitic Peninsular; a possible result from Holocene climate fluctuations// Antarctica: A keystone in changing world-Online proceeding of the 10th ISAES. USGS Open File Report 2007-1047, Short Research Paper 027, 2007, doi:10.3133/of2007-1047.srp027.

19 Elberling B, Gregorich E G, Hopkins D W, et al. Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biology & Biochemistry, 2006, 38 (10): 3095-3106, doi: 10.1016/j.soilbio.2005.12.011.

20 Strauss S L, Christopher T R, Day T A. Trends in soil characteristics along a recently deglaciated foreland on Anvers Island, Antarctic Peninsula. Polar Biology, 2009, 32 (12): 1779-1788, doi: 10.1007/s00300-009-0677-3.

21 Barrett J E, Virginia R A, Hopkins D W, et al. Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology & Biochemistry, 2006, 38(10): 3019-3034, doi: 0.1016/j.soilbio.2006.04.041.

22 Engelen A, Convey P, Hodgson D A, et al. Soil properties of an Antarctic inland site: Implications for ecosystem development. Polar Biology, 2008, 31(12): 1453-1460, doi: 10.1007/s00300-008-0486-0.

23 Navas A, Lopez-Martfnez J, Casas J, et al. 2008. Soil characteristics on varying lithological substrates in the South Shetland Island, Maritime Antarctica. Geoderma, 2008, 144(1-2): 123-139, doi: 10.1016/j.geoderma. 2007.10.011.

24 Blecker S W, Ippolitoa J A, Barrett J E, et al. Phosphorus fractions in soils of Taylor Valley, Antarctica. Soil Science Society of American Journal, 2006, 70 (3): 806-815, doi: 10.2136/sssaj2005.0333.

25 Lajtha K, Schlesinger W H. The biogeochemistry of phosphorous cycling and phosphorous availability along a desert soil chrono-sequence. Ecology, 1988, 69: 24-39.

26 Bate D B, Barrett J E, Poage M A, et al. Soil phosphorus cycling in an Antarctic polar desert. Geoderma, 2008, 144(1-2): 21-31, doi: 10.1016/j. geoderma.2007.10.007.