doi:

DOI: 10.3724/SP.J.1042.2017.00452

Advances in Psychological Science (心理科学进展) 2017/25:3 PP.452-462

The cause of obesity: An explanation from food reward perspective


Abstract:
Food is a natural rewarding stimulus, which promotes human to seek for it because of their instinctive desire and need for reward. "Wanting", "liking" and "learning & reinforcement" are three main components of food reward, and each of them is represented in its corresponding neural pathway. Food reward regulates food intake behavior and body weight. The association between food reward and obesity has predominantly been explained by three main theoretic models, namely the incentive sensitization theory of addiction, the reward-surfeit theory of obesity and the reward deficit theory of obesity. In human studies, the association between food reward and obesity has usually been studied by using a cross-sectional design, perspective design or longitudinal within-subjects design, in which either food pictures or palatable liquid foods (such as milkshake) were used as the experimental stimuli to obtain brain responses to food cues or actual foods, respectively. In addition, human brain response to both food cues and actual foods is regulated by the human genome. The role of single nucleotide polymorphisms (SNPs) in dopamine D2 receptor gene TaqIA rs1800497 and the FTO gene rs9939609 is discussed in the current review.

Key words:obesity,food reward,fMRI,TaqIA,FTO

ReleaseDate:2017-04-10 17:44:41



Babbs, R. K., Sun, X., Felsted, J., Chouinard-Decorte, F., Veldhuizen, M. G., & Small, D. M. (2013). Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiology & Behavior, 121, 103-111.

Berridge, K. C. (1996). Food reward:Brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20(1), 1-25.

Berridge, K. C. (2009). ‘Liking’ and ‘wanting’ food rewards:Brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537-550.

Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646-664.

Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507-513.

Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward:‘Liking’,‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 65-73.

Bowirrat, A., & Oscar-Berman, M. (2005). Relationship between dopaminergic neurotransmission, alcoholism, and reward deficiency syndrome. American Journal of Medical Genetics Part B:Neuropsychiatric Genetics, 132B (1), 29-37.

Bruce, A. S., Holsen, L. M., Chambers, R. J., Martin, L. E., Brooks, W. M., Zarcone, J. R.,... Savage, C. R. (2010). Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. International Journal of Obesity, 34(10), 1494-1500.

Burger, K. S., & Berner, L. A. (2014). A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Physiology & Behavior, 136, 121-127.

Burger, K. S., & Stice, E. (2011). Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures. NeuroImage, 55(1), 233-239.

Burger, K. S., & Stice, E. (2012). Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. The American Journal of Clinical Nutrition, 95(4), 810-817.

Burger, K. S., & Stice, E. (2014). Greater striatopallidal adaptive coding during cue-reward learning and food reward habituation predict future weight gain. NeuroImage, 99, 122-128.

Carnell, S., Gibson, C., Benson, L., Ochner, C. N., & Geliebter, A. (2012). Neuroimaging and obesity:Current knowledge and future directions. Obesity Reviews, 13(1), 43-56.

Caruso, V., Bahari, H., & Morris, M. J. (2013). The Beneficial effects of early short-term exercise in the offspring of obese mothers are accompanied by alterations in the hypothalamic gene expression of appetite regulators and FTO (fat mass and obesity associated) gene. Journal of Neuroendocrinology, 25(8), 742-752.

Cerasa, A., Gioia, M. C., Tarantino, P., Labate, A., Arabia, G., Annesi, G.,... Quattrone, A. (2009). The DRD2 TaqIA polymorphism associated with changed midbrain volumes in healthy individuals. Genes Brain & Behavior, 8(4), 459-463.

Cheung, M. K., Gulati, P., O'Rahilly, S., & Yeo, G. S. H. (2013). FTO expression is regulated by availability of essential amino acids. International Journal of Obesity, 37(5), 744-747.

Cornier, M.-A., Melanson, E. L., Salzberg, A. K., Bechtell, J. L., & Tregellas, J. R. (2012). The effects of exercise on the neuronal response to food cues. Physiology & Behavior, 105(4), 1028-1034.

Dagher, A. (2009). The neurobiology of appetite:Hunger as addiction. International Journal of Obesity, 33, S30-S33.

Dawe, S., & Loxton, N. J. (2004). The role of impulsivity in the development of substance use and eating disorders. Neuroscience & Biobehavioral Reviews, 28(3), 343-351.

Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. The Journal of Neuroscience, 32(16), 5549-5552.

Dimitropoulos, A., Tkach, J., Ho, A., & Kennedy, J. (2012). Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite, 58(1), 303-312.

Dougkas, A., Yaqoob, P., Givens, D. I., Reynolds, C. K., & Minihane, A. M. (2013). The impact of obesity-related SNP on appetite and energy intake. British Journal of Nutrition, 110(6), 1151-1156.

Fetissov, S. O., Meguid, M. M., Sato, T., & Zhang, L.-H. (2002). Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(4), R905-R910.

Frank, G. K. W., Reynolds, J. R., Shott, M. E., Jappe, L., Yang, T. T., Tregellas, J. R., & O'Reilly, R. C. (2012). Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology, 37(9), 2031-2046.

Frank, S., Veit, R., Sauer, H., Enck, P., Friederich, H. C., Unholzer, T.,... Preissl, H. (2016). Dopamine depletion reduces food-related reward activity independent of BMI. Neuropsychopharmacology, 41, 1551-1559.

Frankort, A., Roefs, A., Siep, N., Roebroeck, A., Havermans, R., & Jansen, A. (2012). Reward activity in satiated overweight women is decreased during unbiased viewing but increased when imagining taste:An event-related fMRI study. International Journal of Obesity, 36(5), 627-637.

Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M.,... McCarthy, M. I. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316(5826), 889-894.

Gearhardt, A. N., Yokum, S., Stice, E., Harris, J. L., & Brownell, K. D. (2014). Relation of obesity to neural activation in response to food commercials. Social Cognitive & Affective Neuroscience, 9(7), 932-938.

Gerken, T., Girard, C. A., Tung, Y.-C. L., Webby, C. J., Saudek, V., Hewitson, K. S.,... Schofield, C. J. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science, 318(5855), 1469-1472.

Heni, M., Kullmann, S., Veit, R., Ketterer, C., Frank, S., Machicao, F.,... Fritsche, A. (2014). Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Molecular Metabolism, 3(2), 109-113.

Ho, A. J., Stein, J. L., Hua, X., Lee, S., Hibar, D. P., Leow, A. D.,... the Alzheimer's Disease Neuroimaging Initiative. (2010). A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8404-8409.

Ho, C. Y., & Berridge, K. C. (2013). An orexin hotspot in ventral pallidum amplifies hedonic ‘liking’ for sweetness. Neuropsychopharmacology, 38(9), 1655-1664.

Hogenkamp, P. S., Zhou, W., Dahlberg, L. S., Stark, J., Larsen, A. L., Olivo, G.,... Schiöth, H. B. (2016). Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake. International Journal of Obesity, doi:10.1038/ijo. 2016.105

Huang, T., Qi, Q. B., Li, Y. P., Hu, F. B., Bray, G. A., Sacks, F. M.,... Qi, L. (2014). FTO genotype, dietary protein, and change in appetite:The preventing overweight using novel dietary strategies trial. The American Journal of Clinical Nutrition, 99(5), 1126-1130.

Johnson, A. W. (2013). Eating beyond metabolic need:How environmental cues influence feeding behavior. Trends in Neurosciences, 36(2), 101-109.

Johnson, P. M., & Kenny, P. J. (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature Neuroscience, 13(5), 635-641.

Kühn, A. B., Feis, D.-L., Schilbach, L., Kracht, L., Hess, M. E., Mauer, J.,... Tittgemeyer, M. (2016). FTO gene variant modulates the neural correlates of visual food perception. NeuroImage, 128, 21-31.

Karra, E., O'Daly, O. G., Choudhury, A. I., Yousseif, A., Millership, S., Neary, M. T.,... Batterham, R. L. (2013). A link between FTO, ghrelin, and impaired brain food-cue responsivity. The Journal of Clinical Investigation, 123(8), 3539-3551.

Kelley, A. E., Bless, E. P., & Swanson, C. J. (1996). Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. Journal of Pharmacology and Experimental Therapeutics, 278(3), 1499-1507.

Kenny, P. J. (2011). Reward mechanisms in obesity:New insights and future directions. Neuron, 69(4), 664-679.

Kringelbach, M. L., Stein, A., & van Hartevelt, T. J. (2012). The functional human neuroanatomy of food pleasure cycles. Physiology & Behavior, 106(3), 307-316.

Kroemer, N. B., & Small, D. M. (2016). Fuel not fun:Reinterpreting attenuated brain responses to reward in obesity. Physiology & Behavior, 162, 37-45.

Leyton, M. (2010). The neurobiology of desire:Dopamine and the regulation of mood and motivational states in humans. In M. L. Kringelbach & K. C. Berridge (Eds.), Pleasures of the brain (pp. 222-243). New York:Oxford University Press.

Leyton, M., Boileau, I., Benkelfat, C., Diksic, M., Baker, G., & Dagher, A. (2002). Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking:A PET/[11C] raclopride study in healthy men. Neuropsychopharmacology, 27(6), 1027-1035.

Münzberg, H., Qualls-Creekmore, E., Yu, S., Morrison, C. D., & Berthoud, H. R. (2016). Hedonics act in unison with the homeostatic system to unconsciously control body weight. Frontiers in Nutrition, 3,6.

Malik, S., McGlone, F., Bedrossian, D., & Dagher, A. (2008). Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metabolism, 7(5), 400-409.

Martin, L. E., Holsen, L. M., Chambers, R. J., Bruce, A. S., Brooks, W. M., Zarcone, J. R.,... Savage, C. R. (2010). Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity, 18(2), 254-260.

Murdaugh, D. L., Cox, J. E., Cook, E. W., & Weller, R. E. (2012). FMRI reactivity to high-calorie food pictures predicts short-and long-term outcome in a weight-loss program. NeuroImage, 59(3), 2709-2721.

Ng, J., Stice, E., Yokum, S., & Bohon, C. (2011). An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing? Appetite, 57(1), 65-72.

Nummenmaa, L., Hirvonen, J., Hannukainen, J. C., Immonen, H., Lindroos, M. M., Salminen, P., & Nuutila, P. (2012). Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One, 7(2), e31089.

Pinto, R. M., Cominetti, C., & da Cruz, A. D. (2016). Basic and genetic aspects of food intake control and obesity:Role of dopamine receptor D2 TaqIA polymorphism. Obesity Research, 2(4), 119-127.

Pool, E., Sennwald, V., Delplanque, S., Brosch, T., & Sander, D. (2016). Measuring wanting and liking from animals to humans:A systematic review. Neuroscience & Biobehavioral Reviews, 63, 124-142.

Rapuano, K. M., Huckins, J. F., Sargent, J. D., Heatherton, T. F., & Kelley, W. M. (2016). Individual differences in reward and somatosensory-motor brain regions correlate with adiposity in adolescents. Cerebral Cortex, 26(6), 2602-2611.

Rask-Andersen, M., Almén, M. S., Olausen, H. R., Olszewski, P. K., Eriksson, J., Chavan, R. A.,... Schiöth, H. B. (2011). Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway. BMC Neuroscience, 12, 117.

Raynor, H. A., & Epstein, L. H. (2001). Dietary variety, energy regulation, and obesity. Psychological Bulletin, 127(3), 325-341.

Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving:An incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247-291.

Rolls, E. T. (2011). Taste, olfactory and food texture reward processing in the brain and obesity. International Journal of Obesity, 35(4), 550-561.

Roth, C. L., Hinney, A., Schur, E. A., Elfers, C. T., & Reinehr, T. (2013). Association analyses for dopamine receptor gene polymorphisms and weight status in a longitudinal analysis in obese children before and after lifestyle intervention. BMC Pediatrics, 13, 197.

Rutters, F., Lemmens, S. G. T., Born, J. M., Bouwman, F., Nieuwenhuizen, A. G., Mariman, E., & Westerterp-Plantenga, M. S. (2010). Genetic associations with acute stress-related changes in eating in the absence of hunger. Patient Education and Counseling, 79(3), 367-371.

Simmons, W. K., Rapuano, K. M., Ingeholm, J. E., Avery, J., Kallman, S., Hall, K. D., & Martin, A. (2014). The ventral pallidum and orbitofrontal cortex support food pleasantness inferences. Brain Structure & Function, 219(2), 473-483.

Small, D. M. (2010). Taste representation in the human insula. Brain Structure and Function, 214(5-6), 551-561.

Speakman, J. R., Rance, K. A., & Johnstone, A. M. (2008). Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity, 16(8), 1961-1965.

Stice, E., Burger, K. S., & Yokum, S. (2013). Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. American Journal of Clinical Nutrition, 98(6), 1377-1384.

Stice, E., Burger, K. S., & Yokum, S. (2015). Reward region responsivity predicts future weight gain and moderating effects of the TaqIA allele. The Journal of Neuroscience, 35(28), 10316-10324.

Stice, E., Spoor, S., Bohon, C., & Small, D. M. (2008). Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science, 322(5900), 449-452.

Stice, E., Spoor, S., Bohon, C., Veldhuizen, M. G., & Small, D. M. (2008). Relation of reward from food intake and anticipated food intake to obesity:A functional magnetic resonance imaging study. Journal of Abnormal Psychology, 117(4), 924-935.

Stice, E., & Yokum, S. (2016). Gain in body fat is associated with increased striatal response to palatable food cues, whereas body fat stability is associated with decreased striatal response. The Journal of Neuroscience, 36(26), 6949-6956.

Stice, E., Yokum, S., Bohon, C., Marti, N., & Smolen, A. (2010). Reward circuitry responsivity to food predicts future increases in body mass:Moderating effects of DRD2 and DRD4. NeuroImage, 50(4), 1618-1625.

Stice, E., Yokum, S., Burger, K., Rohde, P., Shaw, H., & Gau, J. M. (2015). A pilot randomized trial of a cognitive reappraisal obesity prevention program. Physiology & Behavior, 138, 124-132.

Stoeckel, L. E., Weller, R. E., Cook, E. W., Twieg, D. B., Knowlton, R. C., & Cox, J. E. (2008). Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage, 41(2), 636-647.

Swinburn, B., Sacks, G., & Ravussin, E. (2009). Increased food energy supply is more than sufficient to explain the US epidemic of obesity. American Journal of Clinical Nutrition, 90(6), 1453-1456.

Tanofsky-Kraff, M., Han, J. C., Anandalingam, K., Shomaker, L. B., Columbo, K. M., Wolkoff, L. E.,... Yanovski, J. A. (2009). The FTO gene rs9939609 obesity-risk allele and loss of control over eating. The American Journal of Clinical Nutrition, 90(6), 1483-1488.

Thomas, J. M., Higgs, S., Dourish, C. T., Hansen, P. C., Harmer, C. J., & Mccabe, C. (2015). Satiation attenuates BOLD activity in brain regions involved in reward and increases activity in dorsolateral prefrontal cortex:An fMRI study in healthy volunteers. American Journal of Clinical Nutrition, 101(4), 697-704.

Tindell, A. J., Berridge, K. C., Zhang, J., Peciña, S., & Aldridge, J. W. (2005). Ventral pallidal neurons code incentive motivation:Amplification by mesolimbic sensitization and amphetamine. European Journal of Neuroscience, 22(10), 2617-2634.

Tupala, E., Hall, H., Mantere, T., Räsänen, P., Särkioja, T., & Tiihonen, J. (2003). Dopamine receptors and transporters in the brain reward circuits of type 1 and 2 alcoholics measured with human whole hemisphere autoradiography. NeuroImage, 19(1), 145-155.

Vijayaraghavan, L., Adolphs, R., Kennedy, D. P., Cassell, M., Tranel, D., & Paradiso, S. (2013). A selective role for right insula——basal ganglia circuits in appetitive stimulus processing. Social Cognitive & Affective Neuroscience, 8(7), 813-819.

Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D.,... Pappas, N. (2002). "Nonhedonic" food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44(3), 175-180.

Volkow, N. D., Wang, G. J., Tomasi, D., & Baler, R. D. (2013). Obesity and addiction:Neurobiological overlaps. Obesity Reviews, 14(1), 2-18.

Vucetic, Z., Carlin, J. L., Totoki, K., & Reyes, T. M. (2012). Epigenetic dysregulation of the dopamine system in diet-induced obesity. Journal of Neurochemistry, 120(6), 891-898.

Wagner, D. D., Altman, M., Boswell, R. G., Kelley, W. M., & Heatherton, T. F. (2013). Self-regulatory depletion enhances neural responses to rewards and impairs top-down control. Psychological Science, 24(11), 2262-2271.

Wang, G.-J., Volkow, N. D., & Fowler, J. S. (2002). The role of dopamine in motivation for food in humans:Implications for obesity. Expert Opinion on Therapeutic Targets, 6(5), 601-609.

Wang, G.-J., Volkow, N. D., Logan, J., Pappas, N. R., Wong, C. T., Zhu, W.,... Fowler, J. S. (2001). Brain dopamine and obesity. The Lancet, 357(9253), 354-357.

Wise, R. A. (2006). Role of brain dopamine in food reward and reinforcement. Philosophical Transactions of the Royal Society B:Biological Sciences, 361(1471), 1149-1158.

World Health Organization. (2015). Obesity and overweight. Fact sheet N° 311. Updated January 2015. Gineve, Switzerland:World Health Organization.

Wyvell, C. L., & Berridge, K. C. (2000). Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward:Enhancement of reward "wanting" without enhanced "liking" or response reinforcement. The Journal of Neuroscience, 20(21), 8122-8130.

Yang, M., Xu, Y. Y., Liang, L., Fu, J. F., Xiong, F., Liu, G. L.,... Xu, C. X. (2014). The effects of genetic variation in FTO rs9939609 on obesity and dietary preferences in Chinese Han children and adolescents. PLoS One, 9(8), e104574.

Yokum, S., Ng, J., & Stice, E. (2011). Attentional bias to food images associated with elevated weight and future weight gain:An fMRI study. Obesity, 19(9), 1775-1783.