doi:

DOI: 10.3724/SP.J.1042.2017.00742

Advances in Psychological Science (心理科学进展) 2017/25:5 PP.742-756

Neural evidence for musical meaning transmission: Findings and thoughts based on the priming paradigm


Abstract:
Using four classical priming paradigms -- semantic priming, conceptual priming, affective priming and harmonic priming -- cognitive neuroscientists suggest that music transmits different meanings, because they have found two EEG signals N400 and N5 that correspond to extra-musical meaning and intra-music meaning respectively. We analyzed the four priming paradigms and found that: the core characteristics of these four paradigms is “the match or mismatch effect” based on “musical gestalt” or “musical expectancy”, meanwhile, these four paradigms can be further divided into “semantic medium paradigm” and “non-semantic medium paradigm”. Recent studies reveal that N400 and N5 responses are not independent. Instead, they may be two expressions of the same neural activity. As an artistic format of human creation, the transmission of meaning via music carry features of a particular era, region or culture, which in turn affect the generalizability and uniqueness of transmitting meanings via music. Therefore, in the future, cognitive neuroscientific studies of music should consider a broader range of humanistic factors, such as historical or social backgrounds.

Key words:music,intra-meaning,extra-meaning,N400,N5

ReleaseDate:2017-05-31 14:49:37



蔡黎曼, 黄平, 莫雷, 黄虹, 黄汉华, 李悠. (2013). 音乐对情感词加工的情感/意义双启动效应. 心理科学, 36, 547–552.

蔡黎曼, 钟罗金. (2016). 音乐意义的心理学研究. 星海音乐学院学报, (1), 114–123.

蒋存梅. (2016). 音乐心理学 (pp. 138–220). 上海: 华东师范大学出版社.

李福印, 陈芸芸. (2009). 声音的形状: 音乐隐喻与音乐认知的体验基础. 中国外语, 6(3), 31–39.

刘子夜, 刘博, 钟佳利, 亓贝尔, 董瑞娟, 王硕. (2014). 文化差异与音乐感知的相关性分析. 听力学及言语疾病杂志, 22, 351–355.

马谐, 杨玉芳, 张秋月. (2016). 音乐句法的加工. 科学通报, 61, 1099–1111.

宋瑾. (2008). 音乐的意义. 中国音乐, (1), 127–139.

田震子. (2016). 电子音乐中的空间艺术特征. 音乐创作, (2), 124–126.

姚昭, 朱湘茹, 王振宏. (2016). 语义表征具身理论: 情绪在概念表征中的作用. 心理科学, 39, 69–76.

张玥, 辛自强. (2016). 社会心理学中的启动研究: 范式与挑战. 心理科学进展, 24, 844–854.

周临舒, 蒋存梅. (2016). 音乐传达哲理性概念的认知神经机制. 心理科学进展, 24, 855–862.

Barraza, P., Chavez, M., & Rodríguez, E. (2015). Ways of making-sense: Local gamma synchronization reveals differences between semantic processing induced by music and language. Brain and Language, 152, 44–49.

Besson, M., Faïta, F., Peretz, I., Bonnel, A.-M., & Requin, J. (1998). Singing in the brain: Independence of lyrics and tunes. Psychological Science, 9, 494–498.

Besson, M., Frey, A., & Aramaki, M. (2011). Is the distinction between intra- and extra-musical meaning implemented in the brain?: Comment on "towards a neural basis of processing musical semantics" by stefan koelsch. Physics of Life Reviews, 8, 112–113.

Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. A., & Madurell, F. (2001). The effect of harmonic context on phoneme monitoring in vocal music. Cognition, 81, B11–B20.

Bonnel, A.-M., Faita, F., Peretz, I., & Besson, M. (2001). Divided attention between lyrics and tunes of operatic songs: Evidence for independent processing. Perception & Psychophysics, 63, 1201–1213.

Brown, C., & Hagoort, P. (1993). The processing nature of the n400: Evidence from masked priming. Journal of Cognitive Neuroscience, 5, 34–44.

Cai, L. M., Huang, P., Luo, Q. L., Huang, H., & Mo, L. (2015). Iconic meaning in music: An event-related potential study. PLoS One, 10, e0132169.

Carrus, E., Pearce, M. T., & Bhattacharya, J. (2013). Melodic pitch expectation interacts with neural responses to syntactic but not semantic violations. Cortex, 49, 2186– 2200.

Daltrozzo, J., & Schön, D. (2009a). Conceptual processing in music as revealed by N400 effects on words and musical targets. Journal of Cognitive Neuroscience, 21, 1882– 1892.

Daltrozzo, J., & Schön, D. (2009b). Is conceptual processing in music automatic? An electrophysiological approach. Brain Research, 1270, 88–94.

Daltrozzo, J., Tillmann, B., Platel, H., & Schön, D. (2010). Temporal aspects of the feeling of familiarity for music and the emergence of conceptual processing. Journal of Cognitive Neuroscience, 22, 1754–1769.

d'Errico, F., Henshilwood, C., Lawson, G., Vanhaeren, M., Tillier, A.-M., Soressi, M., … Julien, M. (2003). Archaeological evidence for the emergence of language, symbolism, and music-an alternative multidisciplinary perspective. Journal of World Prehistory, 17, 1–70.

Duan, X. J., Dai, Q., Gong, Q. Y., & Chen, H. F. (2010). Neural mechanism of unconscious perception of surprised facial expression. NeuroImage, 52, 401–407.

Francois, C., & Schön, D. (2010). Learning of musical and linguistic structures: Comparing event-related potentials and behavior. Neuroreport, 21, 928–932.

Frey, A., Marie, C., Prod'Homme, L., Timsit-Berthier, M., Schöön, D., & Besson, M. (2009). Temporal semiotic units as minimal meaningful units in music? An electrophysiological approach. Music Perception: An Interdisciplinary Journal, 26, 247–256.

Fritz, T. H., Schmude, P., Jentschke, S., Friederici, A. D., & Koelsch, S. (2013). From understanding to appreciating music cross-culturally. PLoS One, 8, e72500.

Gagnon, L., & Peretz, I. (2003). Mode and tempo relative contributions to “happy-sad” judgements in equitone melodies. Cognition & Emotion, 17, 25–40.

Goerlich, K. S., Witteman, J., Aleman, A., & Martens, S. (2011). Hearing feelings: Affective categorization of music and speech in alexithymia, an ERP study. PLoS One, 6, e19501.

Hoenig, K., Müller, C., Herrnberger, B., Sim, E.-J., Spitzer, M., Ehret, G., & Kiefer, M. (2011). Neuroplasticity of semantic representations for musical instruments in professional musicians. NeuroImage, 56, 1714–1725.

Hohlfeld, A., & Sommer, W. (2005). Semantic processing of unattended meaning is modulated by additional task load: Evidence from electrophysiology. Cognitive Brain Research, 24, 500–512.

James, C. E., Cereghetti, D. M., Tribes, E. R., & Oechslin, M. S. (2015). Electrophysiological evidence for a specific neural correlate of musical violation expectation in primary-school children. NeuroImage, 104, 386–397.

Jentschke, S., Friederici, A. D., & Koelsch, S. (2014). Neural correlates of music-syntactic processing in two-year old children. Developmental Cognitive Neuroscience, 9, 200–208.

Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behavioral and Brain Sciences, 31, 559–575.

Kamiyama, K. S., Abla, D., Iwanaga, K., & Okanoya, K. (2013). Interaction between musical emotion and facial expression as measured by event-related potentials. Neuropsychologia, 51, 500–505.

Kendall, R. A., & Carterette, E. C. (1993a). Verbal attributes of simultaneous wind instrument timbres: I. Von Bismarck's adjectives. Music Perception: An Interdisciplinary Journal, 10, 445–467.

Kendall, R. A., & Carterette, E. C. (1993b). Verbal attributes of simultaneous wind instrument timbres: II. Adjectives induced from Piston's “Orchestration”. Music Perception: An Interdisciplinary Journal, 10, 469–501.

Koelsch, S. (2011a). Toward a neural basis of music perception-A review and updated model. Frontiers in Psychology, 2, 110.

Koelsch, S. (2011b). Towards a neural basis of processing musical semantics. Physics of Life Reviews, 8, 89–105.

Koelsch, S. (2012). Brain and music (pp. 156–185). Hoboken, NJ: John Wiley & Sons.

Koelsch, S., Gunter, T. C., Friederici, A. D., & Schröger, E., (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 12, 520–541.

Koelsch, S., Gunter, T. C., Schröger, E., Tervaniemi, M., Sammler, D., & Friederici, A. D. (2001). Differentiating ERAN and MMN: An ERP study. Neuroreport, 12, 1385–1389.

Koelsch, S., Gunter, T. C., Wittfoth, M., & Sammler, D. (2005). Interaction between syntax processing in language and in music: An ERP study. Journal of Cognitive Neuroscience, 17, 1565–1577.

Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., & Friederici, A. D. (2004). Music, language and meaning: Brain signatures of semantic processing. Nature Neuroscience, 7, 302–307.

Koelsch, S., Kilches, S., Steinbeis, N., & Schelinski, S. (2008). Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity. PLoS One, 3, e2631.

Koelsch, S., & Mulder, J. (2002). Electric brain responses to inappropriate harmonies during listening to expressive music. Clinical Neurophysiology, 113, 862–869.

Koelsch, S., Schroger, E., & Gunter, T. C. (2002). Music matters: Preattentive musicality of the human brain. Psychophysiology, 39, 38–48.

Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9, 578–584.

Krumhansl, C. L., & Keil, F. C. (1982). Acquisition of the hierarchy of tonal functions in music. Memory & Cognition, 10, 243–251.

Krumhansl, C. L., Toivanen, P., Eerola, T., Toiviainen, P., Järvinen, T., & Louhivuori, J. (2000). Cross-cultural music cognition: Cognitive methodology applied to north sami yoiks. Cognition, 76, 13–58.

Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205.

Lakoff, G, & Johnson, M. (1980). Metaphors we live by (pp. 1–38). Chicago: University of Chicago Press.

Lamont, A., & Webb, R. (2010). Short- and long-term musical preferences: What makes a favourite piece of music. Psychology of Music, 38, 222–241.

Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)Constructing the N400. Nature Reviews Neuroscience, 9, 920–933.

Loui, P., Grent-'t-Jong, T., Torpey, D., & Woldorff, M. (2005). Effects of attention on the neural processing of harmonic syntax in western music. Cognitive Brain Research, 25, 678–687.

Matsumoto, A., Iidaka, T., Nomura, M., & Ohira, H. (2005). Dissociation of conscious and unconscious repetition priming effect on event-related potentials. Neuropsychologia, 43, 1168–1176.

Miranda, R. A., & Ullman, M. T. (2007). Double dissociation between rules and memory in music: An event-related potential study. NeuroImage, 38, 331–345.

Nan, Y., Knösche, T. R., Zysset, S., & Friederici, A. D. (2008). Cross-cultural music phrase processing: An fMRI study. Human Brain Mapping, 29, 312–328.

Painter, J. G., & Koelsch, S. (2011). Can out-of-context musical sounds convey meaning? An ERP study on the processing of meaning in music. Psychophysiology, 48, 645–655.

Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10, 717–733.

Peretz, I., Gagnon, L., & Bouchard, B. (1998). Music and emotion: Perceptual determinants, immediacy, and isolation after brain damage. Cognition, 68, 111–141.

Peretz, I., Champod, A. S., & Hyde, K. (2003). Varieties of musical disorders: The montreal battery of evaluation of amusia. Annals of the New York Academy of Sciences, 999, 58–75.

Poulin-Charronnat, B., Bigand, E., Madurell, F., & Peereman, R. (2005). Musical structure modulates semantic priming in vocal music. Cognition, 94, B67–B78.

Poulin-Charronnat, B., Bigand, E., & Koelsch, S. (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18, 1545–1554.

Reich, U. (2011). The meanings of semantics: Comment on "towards a neural basis of processing musical semantics" by Stefan Koelsch. Physics of Life Reviews, 8, 120–121.

Reker, M., Ohrmann, P., Rauch, A. V., Kugel, H., Bauer, J., Dannlowski U., & Suslow, T. (2010). Individual differences in alexithymia and brain response to masked emotion faces. Cortex, 46, 658–667.

Schön, D., Ystad, S., Kronland-Martinet, R., & Besson, M. (2010). The evocative power of sounds: Conceptual priming between words and nonverbal sounds. Journal of Cognitive Neuroscience, 22, 1026–1035.

Sollberger, B., Rebe, R., & Eckstein, D. (2003). Musical chords as affective priming context in a word-evaluation task. Music Perception, 20, 263–282.

Steinbeis, N. (2008). Investigating the meaning of music using EEG and fMRI (Unpublished doctorial dissertation). Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig.

Steinbeis, N., & Koelsch, S. (2008a). Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cerebral Cortex, 18, 1169–1178.

Steinbeis, N., & Koelsch, S. (2008b). Comparing the processing of music and language meaning using EEG and FMRI provides evidence for similar and distinct neural representations. PLoS One, 3, e2226.

Steinbeis, N., & Koelsch, S. (2011). Affective priming effects of musical sounds on the processing of word meaning. Journal of Cognitive Neuroscience, 23, 604–621.

van Petten, C., & Kutas, M. (1990). Interactions between sentence context and word frequencyinevent-related brainpotentials. Memory & Cognition, 18, 380–393.

Zhou, L. S., Jiang, C. M., Delogu, F., & Yang, Y. F. (2014). Spatial conceptual associations between music and pictures as revealed by N400 effect. Psychophysiology, 51, 520–528.

Zhou, L. S., Jiang, C. M., Wu, Y. Y., & Yang, Y. F. (2015). Conveying the concept of movement in music: An event- related brain potential study. Neuropsychologia, 77, 128–136.