DOI: 10.3724/SP.J.1042.2017.00923

Advances in Psychological Science (心理科学进展) 2017/25:6 PP.923-932

Experimental paradigms for discrete attention in visual domain

The spotlight of attention is intrinsically rhythmic, which discretely sample a single or multiple objects. This phenomenon is called discrete attention. Here we summarized four paradigms used to investigate discrete attention in visual domain. In the wagon-wheel illusion paradigm, motion direction illusion is experienced. This paradigm is adopted to demonstrate the discreteness of attention. In the visual detection paradigm, participants are asked to detect the near-threshold stimuli, which is used to investigate relationship between neural oscillation and discrete attention. In the high time-resolved cue-target paradigm, a target occurs after a varying interval following a peripheral cue; while the target is embedded among distracters in the visual search paradigm. These two paradigms are developed to vividly show behavioral oscillation patterns.

Key words:discrete attention in visual domain,wagon-wheel illusion,cue-target paradigm,visual detection,visual search

ReleaseDate:2017-08-07 10:18:52

张雪, 袁佩君, 王莹, 蒋毅. (2016). 知觉相关的神经振荡-外界节律同步化现象. 生物化学与生物物理进展, 43, 308-315.

冯永辉, 彭运石. (2016). 心理学客观范式的内涵, 嬗变与未来. 苏州大学学报:教育科学版, 4(3), 41-48.

Benedetto, A., Spinelli, D., & Morrone, M. C. (2016). Rhythmic modulation of visual contrast discrimination triggered by action. Proceedings of the Royal Society B:Biological Sciences, 283, 3536-3544.

Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. The Journal of Neuroscience, 29, 7869-7876.

Busch, N. A., & VanRullen, R. (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences of the United States of America, 107, 16048-16053.

Buschman, T. J., & Kastner, S. (2015). From behavior to neural dynamics:An integrated theory of attention. Neuron, 88, 127-144.

Buschman, T. J., & Miller, E. K. (2009). Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron, 63, 386-396.

Cohen, M. R., & Maunsell, J. H. R. (2011). When attention wanders:How uncontrolled fluctuations in attention affect performance. The Journal of Neuroscience, 31, 15802-15806.

Dugué, L., Marque, P., & VanRullen, R. (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. The Journal of Neuroscience, 31, 11889-11893.

Dugué, L., Marque, P., & VanRullen, R. (2015). Theta oscillations modulate attentional search performance periodically. Journal of Cognitive Neuroscience, 27, 945-958.

Dugué, L., McLelland, D., Lajous, M., & VanRullen, R. (2015). Attention searches nonuniformly in space and in time. Proceedings of the National Academy of Sciences of the United States of America, 112, 15214-15219.

Dugué, L., Roberts, M., & Carrasco, M. (2016). Attention reorients periodically. Current Biology, 26, 1595-1601.

Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23, 2553-2558.

Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bäuml, K.-H. (2007). Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage, 37, 1465-1473.

Herbst, S. K., & Landau, A. N. (2016). Rhythms for cognition:The case of temporal processing. Current Opinion in Behavioral Sciences, 8, 85-93.

Huang, Y., Chen, L., & Luo, H. (2015). Behavioral oscillation in priming:Competing perceptual predictions conveyed in alternating theta-band rhythms. The Journal of Neuroscience, 35, 2830-2837.

Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16, 200-206.

Klimesch, W. (2012). α-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16, 606-617.

Kline, K., Holcombe, A. O., & Eagleman, D. M. (2004). Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Research, 44, 2653-2658.

Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22, 1000-1004.

Landau, A. N., Schreyer, M. H., van Pelt, S., & Fries, P. (2015). Distributed attention is implemented through theta-rhythmic gamma modulation. Current Biology, 25, 2332-2337.

Macdonald, J. S. P., Cavanagh, P., & VanRullen, R. (2014). Attentional sampling of multiple wagon wheels. Attention, Perception, & Psychophysics, 76, 64-72.

Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see:Prestimulus α phase predicts visual awareness. The Journal of Neuroscience, 29, 2725-2732.

Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X:Control of language processes (pp. 531-556). Hillsdale, NJ:Erlbaum.

Purves, D., Paydarfar, J. A., & Andrews, T. J. (1996). The wagon wheel illusion in movies and reality. Proceedings of the National Academy of Sciences of the United States of America, 93, 3693-3697.

Reddy, L., Rémy, F., Vayssière, N., & VanRullen, R. (2011). Neural correlates of the continuous wagon wheel illusion:A functional MRI study. Human Brain Mapping, 32, 163-170.

Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., & Thut, G. (2008). Spontaneous fluctuations in posterior α-band EEG activity reflect variability in excitability of human visual areas. Cerebral Cortex, 18, 2010-2018.

Sherman, M. T., Kanai, R., Seth, A. K., & VanRullen, R. (2016). Rhythmic influence of top-down perceptual priors in the phase of prestimulus occipital alpha oscillations. Journal of Cognitive Neuroscience, 28, 1318-1330.

Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H. (2014). Behavioral oscillations in attention:Rhythmic α pulses mediated through θ band. The Journal of Neuroscience, 34, 4837-4844.

Uchida, N., Kepecs, A., & Mainen, Z. F. (2006). Seeing at a glance, smelling in a whiff:Rapid forms of perceptual decision making. Nature Reviews Neuroscience, 7, 485-491.

VanRullen, R. (2013). Visual attention:A rhythmic process?. Current Biology, 23, R1110-R1112.

VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences, 20, 723-735.

VanRullen, R., Carlson, T., & Cavanagh, P. (2007). The blinking spotlight of attention. Proceedings of the National Academy of Sciences of the United States of America, 104, 19204-19209.

VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous?. Trends in Cognitive Sciences, 7, 207-213.

VanRullen, R., Pascual-Leone, A., & Battelli, L. (2008). The continuous wagon wheel illusion and the ‘When’ pathway of the right parietal lobe:A repetitive transcranial magnetic stimulation study. PLoS One, 3, e2911.

VanRullen, R., Reddy, L., & Koch, C. (2005). Attention-driven discrete sampling of motion perception. Proceedings of the National Academy of Sciences of the United States of America, 102, 5291-5296.

VanRullen, R., Reddy, L., & Koch, C. (2006). The continuous wagon wheel illusion is associated with changes in electroencephalogram power at approximately 13 Hz. The Journal of Neuroscience, 26, 502-507.

VanRullen, R., Reddy, L., & Koch, C. (2010). A motion illusion reveals the temporally discrete nature of visual awareness. In R. Nijhaw & B. Khurana (Eds.), Space and time in perception and action (pp. 521-535). Cambridge:Cambridge University Press.

VanRullen, R., Zoefel, B., & Ilhan, B. (2014). On the cyclic nature of perception in vision versus audition. Philosophical Transactions of the Royal Society B:Biological Sciences, 369, 20130214.

Wolfe, J. M. (2010). Visual search. Current Biology, 20, R346-R349.

Zoefel, B., & Sokoliuk, R. (2014). Investigating the rhythm of attention on a fine-grained scale:Evidence from reaction times. The Journal of Neuroscience, 34, 12619-12621.