doi:

DOI: 10.3724/SP.J.1042.2017.01492

Advances in Psychological Science (心理科学进展) 2017/25:9 PP.1492-1502

The working memory account of the spatial-numerical associations


Abstract:
The SNARC (Spatial-Numerical Association of Response Codes) effect, first reported by Dehaene, Bossini, and Giraux in 1993, means that individuals, when completing basic number processing tasks, typically react faster with their left hands to relatively smaller numbers and faster with their right hands to relatively larger numbers. The SNARC effect has been shown to be stable and robust, but its mechanism is still the subject of debate over the past 20 years. As a Mental Number Line (preexists in long-term memory) account cannot capture the complexity of observations reported in the literature, we aimed to explore the working memory account for the SNARC effect. According to the summarization and analysis of the related literatures, we found that the central executive, phonological subsystems, and the visual subsystems all played important roles in the SNARC effect, and the ordinal position in the sequence in working memory was also a an influential factor of the SNARC effect. However, additional neuroimaging studies are needed to examine the mechanism underlying the SNARC effect.

Key words:SNARC effect,inhibitory control,phonological subsystems,visual subsystems,ordinal position effect

ReleaseDate:2017-10-20 02:12:50



史艺荃, 周晓林. (2004). 执行控制研究的重要范式——任务切换. 心理科学进展, 12, 672-679.

徐晓东, 刘昌. (2006). 数字的空性. 心理科学进展, 14, 851-858.

周晓林. (2004). 执行控制:一个具有广阔理论前途和应用前景的研究领域. 心理科学进展, 12, 641-642.

Abrahamse, E., van Dijck, J. P., & Fias, W. (2016). How does working memory enable number-induced spatial biases? Frontiers in Psychology, 7, 977. doi:10.3389/fpsyg.2016.00977.

Abrahamse, E., van Dijck, J. P., Majerus, S., & Fias, W. (2014). Finding the answer in space:The mental whiteboard hypothesis on serial order in working memory. Frontiers in Human Neuroscience, 8, 932.

Adachi, I. (2014). Spontaneous spatial mapping of learned sequence in chimpanzees:Evidence for a SNARC-like effect. PLoS One, 9, e90373.

Anderson, M. C., & Weaver, C. (2009). Inhibitory control over action and memory. In L. R. Squire (Ed.), Encyclopedia of Neuroscience (pp. 153-163). Amsterdam:Elsevier.

Antoine, S., & Gevers, W. (2016). Beyond left and right:Automaticity and flexibility of number-space associations. Psychonomic Bulletin & Review, 23, 148-155.

Attout, L., Fias, W., Salmon, E., & Majerus, S. (2014). Common neural substrates for ordinal representation in short-term memory, numerical and alphabetical cognition. PLoS One, 9, e92049.

Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36, 731-735.

Baddeley, A. (2012). Working memory:Theories, models, and controversies. Annual Review of Psychology, 63, 1-29.

Baddeley, A., Della Sala, S., Robbins, T. W., & Baddeley, A. (1996). Working memory and executive control[and discussion]. Philosophical Transactions of the Royal Society B:Biological Sciences, 351, 1397-1404.

Bae, G. Y., Choi, J. M., Cho, Y. S., & Proctor, R. W. (2009). Transfer of magnitude and spatial mappings to the SNARC effect for parity judgments. Journal of Experimental Psychology:Learning, Memory, and Cognition, 35, 1506-1521

Banich, M. T., & Depue, B. E. (2015). Recent advances in understanding neural systems that support inhibitory control. Current Opinion in Behavioral Sciences, 1, 17-22.

Ben Nathan, M., Shaki, S., Salti, M., & Algom, D. (2009). Numbers and space:Associations and dissociations. Psychonomic Bulletin & Review, 16, 578-582.

Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting parity and magnitude from Arabic numerals:Developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 74, 286-308.

Bonato, M., & Umiltà, C. (2014). Heterogeneous timescales are spatially represented. Frontiers in Psychology, 5, 542.

Bottini, R., Mattioni, S., & Collignon, O. (2016). Early blindness alters the spatial organization of verbal working memory. Cortex, 83, 271-279.

Brown, S. W. (2006). Timing and executive function:Bidirectional interference between concurrent temporal production and randomization tasks. Memory & Cognition, 34, 1464-1471.

Chen, Q., & Verguts, T. (2010). Beyond the mental number line:A neural network model of number-space interactions. Cognitive Psychology, 60, 218-240.

Collette, F., van der Linden, M., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2001). The functional anatomy of inhibition processes investigated with the Hayling task. NeuroImage, 14, 258-267.

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201-215.

Crollen, V., Dormal, G., Seron, X., Lepore, F., & Collignon, O. (2013). Embodied numbers:The role of vision in the development of number-space interactions. Cortex, 49, 276-283.

Daar, M., & Pratt, J. (2008). Digits affect actions:The SNARC effect and response selection. Cortex, 44, 400-405.

de Belder, M., Abrahamse, E., Kerckhof, E., Fias, W., & van Dijck, J. P. (2015). Serial position markers in space:Visuospatial priming of serial order working memory retrieval. PLoS One, 10, e0116469.

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1-42.

Deheane, S. (1997). The number sense:How the mind creates mathematics. Oxford, England:Oxford University Press.

Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology:Learning, Memory, and Cognition, 21, 314-326.

Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology:General, 122, 371-396.

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506.

Dodd, M. D., van der Stigchel, S., Leghari, M. A., Fung, G., & Kingstone, A. (2008). Attentional SNARC:There's something special about numbers (let us count the ways). Cognition, 108, 810-818.

Dollman, J., & Levine, W. H. (2016). Rapid communication the mental number line dominates alternative, explicit coding of number magnitude. The Quarterly Journal of Experimental Psychology, 69, 403-409.

Deng, Z. J., Chen, Y. H., Zhu, X. S., & Li, Y. J. (2017). The effect of working memory load on the SNARC effect:Maybe tasks have a word to say. Memory & Cognition, 45, 428-441.

Fabbri, M., Cellini, N., Martoni, M., Tonetti, L., & Natale, V. (2013). The mechanisms of Space-Time Association:Comparing motor and perceptual contributions in time reproduction. Cognitive Science, 37, 1228-1250.

Fernández, S. R., Rahona, J. J., Hervás, G., Vázquez, C., & Ulrich, R. (2011). Number magnitude determines gaze direction:Spatial-numerical association in a free-choice task. Cortex, 47, 617-620.

Fias, W., Brysbaert, M., Geypens, F., & d'Ydewalle, G. (1996). The importance of magnitude information in numerical processing:Evidence from the SNARC effect. Mathematical Cognition, 2, 95-110.

Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12, 415-423.

Fias, W., & van Dijck, J. P. (2016). The temporary nature of number-space interactions. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 70, 33-40.

Fias, W., van Dijck, J. P., & Gevers, W. (2011). How is number associated with space? The role of working memory. In S. Dehaene & E. Brannon (Eds.), Space, time and number in the brain:Searching for the foundations of mathematical thought (pp. 133-148). Amsterdam:Elsevier.

Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57, 822-826.

Fischer, M. H. (2003). Cognitive representation of negative numbers. Psychological Science, 14, 278-282.

Fischer, M. H. (2006). The future for SNARC could be stark…. Cortex, 42, 1066-1068.

Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555-556.

Fischer, M. H., & Coeman, P. (2005, July). Moving the mental number line:Rapid effects of training. Poster session presented at the European Summer School on "Neuroscience of number processing" (pp. 3-10), Erice, Italy.

Fischer, M. H., & Fias, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), The handbook of mathematical cognition (pp. 43-54). New York:Psychology Press.

Fischer, M. H., Mills, R. A., & Shaki, S. (2010). How to cook a SNARC:Number placement in text rapidly changes spatial-numerical associations. Brain and Cognition, 72, 333-336.

Fischer, M. H., & Shaki, S. (2016). Measuring spatial-numerical associations:Evidence for a purely conceptual link. Psychological Research, 80, 109-112.

Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56, 361-366.

Ford, N., & Reynolds, M. G. (2016). Do Arabic numerals activate magnitude automatically? Evidence from the psychological refractory period paradigm. Psychonomic Bulletin & Review, 23, 1528-1533.

Galfano, G., Rusconi, E., & Umiltà, C. (2006). Number magnitude orients attention, but not against one's will. Psychonomic Bulletin & Review, 13, 869-874.

Galton, F. (1880). Visualised numerals. Nature, 21, 252-256.

Galton, F. (1881). Visualised numerals. The Journal of the Anthropological Institute of Great Britain and Ireland, 10, 85-102.

Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing architecture underlying Simon and SNARC effects. European Journal of Cognitive Psychology, 17, 659-673.

Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. (2006). Automatic response activation of implicit spatial information:Evidence from the SNARC effect. Acta Psychologica, 122, 221-233.

Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, B87-B95.

Gevers, W., Reynvoet, B., & Fias, W. (2004). The mental representation of ordinal sequences is spatially organised:Evidence from days of the week. Cortex, 40, 171-172.

Gevers, W., Santens, S., Dhooge, E., Chen, Q., van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology:General, 139, 180-190.

Ginsburg, V., & Gevers, W. (2015). Spatial coding of ordinal information in short-and long-term memory. Frontiers in Human Neuroscience, 9, 8.

Ginsburg, V., van Dijck, J. P., Previtali, P., Fias, W., & Gevers, W. (2014). The impact of verbal working memory on number-space associations. Journal of Experimental Psychology:Learning, Memory, and Cognition, 40, 976-986.

Guida, A., Leroux, A., Lavielle-Guida, M., & Noël, Y. (2016). A SPoARC in the dark:Spatialization in verbal immediate memory. Cognitive Science, 40, 2108-2121.

Guida, A., van Dijck, J. P., & Abrahamse, E. (2017). Distinctiveness as a function of spatial expansion in verbal working memory:Comment on Kreitz, Furley, Memmert, and Simons (2015). Psychological Research, 81, 690-695.

Halligan, P. W., Fink, G. R., Marshall, J. C., & Vallar, G. (2003). Spatial cognition:Evidence from visual neglect. Trends in Cognitive Sciences, 7, 125-133.

Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128, 225-237.

Hoffmann, D., Pigat, D., & Schiltz, C. (2014). The impact of inhibition capacities and age on number-space associations. Cognitive Processing, 15, 329-342.

Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435-448.

Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2009). Numerical and spatial intuitions:A role for posterior parietal cortex? In L. Tommasi, M. A. Peterson, & L. Nadel (Eds.), Cognitive biology:Evolutionary and developmental perspectives on mind, brain and behavior (pp. 221-246). New York:MIT Press.

Huber, S., Klein, E., Moeller, K., & Willmes, K. (2016). Spatial-numerical and ordinal positional associations coexist in parallel. Frontiers in Psychology, 7, 438.

Imbo, I., de Brauwer, J., Fias, W., & Gevers, W. (2012). The development of the SNARC effect:Evidence for early verbal coding. Journal of Experimental Child Psychology, 111, 671-680.

Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers:Evidence from the SNARC effect. Memory & Cognition, 32, 662-673.

Jonas, C. N., Spiller, M. J., Jansari, A., & Ward, J. (2014). Comparing implicit and synaesthetic number-space associations:Visuospatial and verbal spatial-numerical associations of response codes. The Quarterly Journal of Experimental Psychology, 67, 1262-1273.

Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect:Evidence for a response-related origin. Memory & Cognition, 33, 681-695.

Kramer, P., Stoianov, I., Umiltà, C., & Zorzi, M. (2011). Interactions between perceptual and numerical space. Psychonomic Bulletin & Review, 18, 722-728.

Lindemann, O., Abolafia, J. M., Pratt, J., & Bekkering, H. (2008). Coding strategies in number space:Memory requirements influence spatial-numerical associations. The Quarterly Journal of Experimental Psychology, 61, 515-524.

Majerus, S., D'Argembeau, A., Perez, T. M., Belayachi, S., van der Linden, M., Collette, F.,... Maquet, P. (2010). The commonality of neural networks for verbal and visual short-term memory. Journal of Cognitive Neuroscience, 22, 2570-2593.

Marshuetz, C. (2005). Order information in working memory:An integrative review of evidence from brain and behavior. Psychological Bulletin, 131, 323-339.

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134-140.

Müller, D., & Schwarz, W. (2007). Is there an internal association of numbers to hands? The task set influences the nature of the SNARC effect. Memory & Cognition, 35, 1151-1161.

Nuerk, H. C., Patro, K., Cress, U., Schild, U., Friedrich, C. K., & Göbel, S. M. (2015). How space-number associations may be created in preliterate children:Six distinct mechanisms. Frontiers in Psychology, 6, 215.

Notebaert, W., Gevers, W., Verguts, T., & Fias, W. (2006). Shared spatial representations for numbers and space:The reversal of the SNARC and the Simon effects. Journal of Experimental Psychology:Human Perception and Performance, 32, 1197-1207.

Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106, 1071-1080.

Patro, K., & Shaki, S. (2016). SNARC for numerosities is modulated by comparative instruction (and resembles some non-numerical effects). Cognitive Processing, 17, 127-137.

Pfister, R., Schroeder, P. A., & Kunde, W. (2013). SNARC struggles:Instant control over spatial-numerical associations. Journal of Experimental Psychology:Learning, Memory, and Cognition, 39, 1953-1958.

Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence:A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416-442.

Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274-278.

Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans' mental number line. Science, 347, 534-536.

Salillas, E., El Yagoubi, R., & Semenza, C. (2008). Sensory and cognitive processes of shifts of spatial attention induced by numbers:An ERP study. Cortex, 44, 406-413.

Santens, S., & Gevers, W. (2008). The SNARC effect does not imply a mental number line. Cognition, 108, 263-270.

Santiago, J., Lupáñez, J., Pérez, E., & Funes, M. J. (2007). Time (also) flies from left to right. Psychonomic Bulletin & Review, 14, 512-516.

Shaki, S., & Fischer, M. H. (2008). Reading space into numbers-a cross-linguistic comparison of the SNARC effect. Cognition, 108, 590-599.

Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16, 328-331.

Shaki, S., & Gevers, W. (2011). Cultural characteristics dissociate magnitude and ordinal information processing. Journal of Cross-Cultural Psychology, 42, 639-650.

Song, J. H., & Nakayama, K. (2008). Target selection in visual search as revealed by movement trajectories. Vision Research, 48, 853-861.

Stoianov, I., Kramer, P., Umiltà, C., & Zorzi, M. (2008). Visuospatial priming of the mental number line. Cognition, 106, 770-779.

Szűcs, D., Soltész, F., & White, S. (2009). Motor conflict in Stroop tasks:Direct evidence from single-trial electro-myography and electro-encephalography. NeuroImage, 47, 1960-1973.

van Dijck, J. P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. The Quarterly Journal of Experimental Psychology, 67, 1500-1513.

van Dijck, J. P., Abrahamse, E. L., Majerus, S., & Fias, W. (2013). Spatial attention interacts with serial-order retrieval from verbal working memory. Psychological Science, 24, 1854-1859.

van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119, 114-119.

van Dijck, J. P., Fias, W., & Andres, M. (2015). Selective interference of grasp and space representations with number magnitude and serial order processing. Psychonomic Bulletin & Review, 22, 1370-1376.

van Dijck, J. P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. Cognition, 113, 248-253.

van Dijck, J. P., Gevers, W., Lafosse, C., & Fias, W. (2011). The heterogeneous nature of number-space interactions. Frontiers in Human Neuroscience, 5, 182.

van Opstal, F., Santens, S., & Ansari, D. (2012). The numerate brain:Recent findings and theoretical reviews on the neurocognitive foundations of number processing. Frontiers in Human Neuroscience, 6, 201.

Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control:Dealing with specific and nonspecific adaptation. Psychological Review, 115, 518-525.

Viarouge, A., Hubbard, E. M., & Dehaene, S. (2014). The organization of spatial reference frames involved in the SNARC effect. The Quarterly Journal of Experimental Psychology, 67, 1484-1499.

Vuilleumier, P., Ortigue, S., & Brugger, P. (2004). The number space and neglect. Cortex, 40, 399-410.

Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number:A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489-525.

Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing:The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5, 165-190.

Zhang, M., Gao, X. F., Li, B. C., Yu, S. Y., Gong, T. W., Jiang, T.,... Chen, Y. H. (2016). Spatial representation of ordinal information. Frontiers in Psychology, 7, 505.

Zhao, X., Chen, A. T., & West, R. (2010). The influence of working memory load on the Simon effect. Psychonomic Bulletin & Review, 17, 687-692.

Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage:Neglect disrupts the mental number line. Nature, 417, 138-139.