doi:

DOI: 10.3724/SP.J.1042.2017.01682

Advances in Psychological Science (心理科学进展) 2017/25:10 PP.1682-1695

Latent variable modeling using Bayesian methods


Abstract:
Bayesian statistical methods is one of the two statistic schools. Recently, Bayesian statistical methods are becoming ever more popular in social and behavioral research. However, domestic psychological and behavioral scholars are not familiar with it. We provide an untechnical introduction about Bayesian statistics, particularly in Bayesian method used in latent variable modeling. Specifically, first we compared the difference between Bayesian methods and Frequentist methods in several basic concepts. Thereafter, the Bayes' Theorem and its analysis procedure were introduced. Finally, to illustrate Bayesian methods in latent variable modeling (i.e., confirmatory factor analysis), a concrete sample was presented. In the end of the paper, we briefly discussed the future direction of Bayesian methods in psychology research.

Key words:Bayesian,Frequentist methods,latent variable modeling,Mplus

ReleaseDate:2017-11-17 09:48:02



王孟成. (2014). 潜变量建模与Mplus应用:基础篇. 重庆:重庆大学出版社.

Berger, J. O., & Sellke, T. (1987). Testing a point null hypothesis:The irreconcilability of p values and evidence. Journal of the American statistical Association, 82, 112-122.

Cohen, J. (1994). The earth is round (p <.05). American Psychologist, 49, 997-1003.

de Vries, R. M., & Morey, R. D. (2013). Bayesian hypothesis testing for single-subject designs. Psychological Methods, 18, 165-185.

Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling, 22, 327-351.

Depaoli, S., & van de Schoot, R. (2015). Improving transparency and replication in Bayesian statistics:The wambs-checklist. Psychological Methods, doi:10.1037/met0000065.

Dienes, Z. (2011). Bayesian versus orthodox statistics:Which side are you on? Perspectives on Psychological Science, 6, 274-290.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton:Chapman and Hall.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). New York, NY:Chapman & Hall.

Gelman, A., Meng, X. L., & Stern, H. S. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733-807.

Jackman, S. (2004). Bayesian analysis for political research. Annual Review of Political Science, 7, 483-505.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795.

King, D. W., Leskin, G. A., King, L. A., & Weathers, F. W. (1998). Confirmatory factor analysis of the Clinician-Administered PTSD scale:Evidence for the dimensionality of posttraumatic stress disorder. Psychological Assessment, 10, 90-96.

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology:General, 142, 573-603.

Kruschke, J. K., Aguinis, H., & Joo, H. (2012). The time has come:Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15, 722-752.

Lee, S. Y. (2007). Structural equation modeling:A Bayesian approach. Chichester, UK:Wiley.

Lynch, S. M. (2007). Introduction to applied Bayesian statistics and estimation for social scientists. New York:Springer.

MacCallum, R. C., Edwards, M. C., & Cai, L. (2012). Hopes and cautions in implementing Bayesian structural equation modeling. Psychological Methods, 17, 340-345.

Meng, X. L. (1994). Posterior predictive p-values. The Annals of Statistics, 22, 1142-1160.

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling:A more flexible representation of substantive theory. Psychological Methods, 17, 313-335.

Muthén, L., & Muthén, B. (1998-2015). Mplus user's guide (7th ed.). Los Angeles, CA:Muthén & Muthén.

Raftery, A. E. (1986). Choosing models for cross-classifications. American Sociological Review, 51, 145-146.

Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E. J. (2016). Bayesian analysis of factorial designs. Psychological Methods, doi:10.1037/met0000057.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B (Statistical Methodology), 64, 583-639.

van de Schoot, R., Winter, S., Ryan, O., Zondervan-Zwijnenburg, M. A. J., & Depaoli, S. (2016). A systematic review of Bayesian papers in psychology:The last 25 years. Psychological Methods, 4, doi:10.1037/met0000100.

Wang, L. J., & Preacher, K. J. (2015). Moderated mediation analysis using Bayesian methods. Structural Equation Modeling, 22, 249-263.

Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14, 301-322.