DOI: 10.3724/SP.J.1042.2017.01831

Advances in Psychological Science (心理科学进展) 2017/25:11 PP.1831-1843

Current situations and challenges of evolutionary musicology

The origin of musicality has puzzled scientists and still puzzles. Since Darwin proposed that music must be a biological adaptation, more and more researchers come to study musicality from a biological perspective. This leads to the rise of an interdiscipline named biomusicology. Evolutionary musicology, as a branch of biomusicology, focuses on the genetic basis, cross-species characterisation and evolutionary significance of musicality. Although experiencing dramatic development over the last decades, most aspects of this field remain largely unknown. Here we propose a conceptual framework for addressing the origin of musicality. Firstly, musicality is to be deconstructed into minimal functional units. Then animal models are to be used to investigate the genetic bases. Finally the evolutionary route is to be reconstructed by systematically combining all the units.

Key words:biomusicology,musicality,evolutionary musicology

ReleaseDate:2017-12-29 17:51:38

蒋存梅. (2016). 音乐心理学. 上海:华东师范大学出版社.

蒋存梅, 张清芳. (2016). 语言与音乐进化的起源. 科学通报, 61, 682-690.

Angelucci, F., Ricci, E., Padua, L., Sabino, A., & Tonali, P. A. (2007). Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus. Neuroscience Letters, 429, 152-155.

Bachem, A. (1955). Absolute pitch. The Journal of the Acoustical Society of America, 27, 1180-1185.

Ball, P. (2008). Science & music:Facing the music. Nature, 453, 160-162.

Barron, M. (2008). Science & music:Raising the roof. Nature, 453, 859-860.

Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98, 11818-11823.

Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2, 382-387.

Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution:Converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11, 747-759.

Brown, S. (2000). Evolutionary models of music:From sexual selection to group selection. In F. Tonneau & N. S. Thompson (Eds.), Perspectives in Ethology:Evolution, Culture, and Behavior (Vol. 13, pp. 231-281). New York, NY:Springer.

Brown, S., Merker, B., & Wallin, N. L. (2000). An introduction to evolutionary musicology. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 3-24). Cambridge, MA:MIT Press.

Cariani, P., & Micheyl, C. (2012). Toward a theory of information processing in auditory cortex. In D. Poeppel, T. Overath, A. N. Popper, & R. R. Fay (Eds.), The human auditory cortex (Vol. 43, pp. 351-390). New York, NY:Springer.

Chikahisa, S., Sano, A., Kitaoka, K., Miyamoto, K. I., & Sei, H. (2007). Anxiolytic effect of music depends on ovarian steroid in female mice. Behavioural Brain Research, 179, 50-59.

Chikahisa, S., Sei, H., Morishima, M., Sano, A., Kitaoka, K., Nakaya, Y., & Morita, Y. (2006). Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behavioural Brain Research, 169, 312-319.

Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460, 737-740.

Cook, N. (2008). Beyond the notes. Nature, 453, 1186-1187.

Cook, P., Rouse, A., Wilson, M., & Reichmuth, C. (2013). A California sea lion (Zalophus californianus) can keep the beat:Motor entrainment to rhythmic auditory stimuli in a non vocal mimic. Journal of Comparative Psychology, 127, 412-427.

Cuddy, L. L., Balkwill, L. L., Peretz, I., & Holden, R. R. (2005). Musical difficulties are rare:A study of "Tone Deafness" among university students. Annals of the New York Academy of Sciences, 1060, 311-324.

Dalla Bella, S., & Sowiński, J. (2015). Uncovering beat deafness:Detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks. Journal of Visualized Experiments, doi:10.3791/51761.

Daniel, H. J., O'Brien, K. F., McCabe, R. B., & Quinter, V. E. (1985). Values in mate selection:A 1984 campus survey. College Student Journal, 19, 44-50.

Darwin, C. (1871). The descent of man, and selection in relation to sex. London:John Murray.

Dissanayake, E. (2000). Antecedents of the temporal arts in early mother-infant interaction. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 389-410). Cambridge, MA:MIT Press.

Doolittle, E. L., Gingras, B., Endres, D. M., & Fitch, W. T. (2014). Overtone-based pitch selection in hermit thrush song:Unexpected convergence with scale construction in human music. Proceedings of the National Academy of Sciences of the United States of America, 111, 16616-16621.

Drayna, D., Manichaikul1, A., de Lange, M., Snieder, H., & Spector, T. (2001). Genetic correlates of musical pitch recognition in humans. Science, 291, 1969-1972.

Elston, R. C. (1992). Segregation and linkage analysis. Animal Genetics, 23, 59-62.

Falk, D. (2004). Prelinguistic evolution in early hominins:Whence motherese? Behavioral and Brain Sciences, 27, 491-503.

Fay, J. C., Wyckoff, G. J., & Wu, C. I. (2001). Positive and negative selection on the human genome. Genetics, 158, 1227-1234.

Fitch, W. T. (2006). The biology and evolution of music:A comparative perspective. Cognition, 100, 173-215.

Freeman, W. J. (2000). A neurobiological role of music in social bonding. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 411-424). Cambridge, MA:MIT Press.

Granot, R. Y., Frankel, Y., Gritsenko, V., Lerer, E., Gritsenko, I., Bachner-Melman, R.,... Ebstein, R. P. (2007). Provisional evidence that the arginine vasopressin 1a receptor gene is associated with musical memory. Evolution and Human Behavior, 28, 313-318.

Gray, P. M., Krause, B., Atema, J., Payne, R., Krumhansl, C., & Baptista, L. (2001). The music of nature and the nature of music. Science, 291, 52-54.

Gregersen, P. K., Kowalsky, E., Lee, A., Baron-Cohen, S., Fisher, S. E., Asher, J. E.,... Li, W. T. (2013). Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Human Molecular Genetics, 22, 2097-2104.

Hagen, E. H., & Bryant, G. A. (2003). Music and dance as a coalition signaling system. Human Nature, 14, 21-51.

Hambrick, D. Z., & Tucker-Drob, E. M. (2015). The genetics of music accomplishment:Evidence for gene-environment correlation and interaction. Psychonomic Bulletin & Review, 22, 112-120.

Hasegawa, A., Okanoya, K., Hasegawa, T., & Seki, Y. (2011). Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Scientific Reports, 1, 120.

Hattori, Y., Tomonaga, M., & Matsuzawa, T. (2013). Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Scientific Reports, 3, 1566.

Hauser, M. D., & McDermott, J. (2003). The evolution of the music faculty:A comparative perspective. Nature Neuroscience, 6, 663-668.

He, C., & Trainor, L. J. (2009). Finding the pitch of the missing fundamental in infants. Journal of Neuroscience, 29, 7718-8822.

Heinsohn, R., Zdenek, C. N., Cunningham, R. B., Endler, J. A., & Langmore, N. E. (2017). Tool-assisted rhythmic drumming in palm cockatoos shares key elements of human instrumental music. Science Advances, 3, e1602399.

Hoeschele, M., Merchant, H., Kikuchi, Y., Hattori, Y., & ten Cate, C. (2015). Searching for the origins of musicality across species. Philosophical Transactions of the Royal Society B:Biological Sciences, 370, 20140094.

Honing, H., Ladinig, O., Háden, G. P., & Winkler, I. (2009). Is beat induction innate or learned? Probing emergent meter perception in adults and newborns using event-related brain potentials. In S. DallaBella, N. Kraus, K. Overy, C. Pantev, J. S. Snyder, M. Tervaniemi, … G. Schlaug (Eds.), Neurosciences and music iii:Disorders and plasticity (Vol. 1169, pp. 93-96). New Jersey, NJ:John Wiley & Sons.

Honing, H., ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music:Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B:Biological Sciences, 370, 20140088.

Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930, 43-61.

Huron, D. (2008). Science & music:Lost in music. Nature, 453, 456-457.

Johnson, J. K., & Graziano, A. B. (2003). August Knoblauch and amusia:A nineteenth-century cognitive model of music. Brain and Cognition, 51, 102-114.

Jones, M. R., Fay, R. R., & Popper, A. N. (2010). Music perception. New York, NY:Springer.

Kanduri, C., Raijas, P., Ahvenainen, M., Philips, A. K., Ukkola-Vuoti, L., Lähdesmäki, H., & Järvelä, I. (2015). The effect of listening to music on human transcriptome. PeerJ, 3, e830.

Kanduri, C., Ukkola-Vuoti, L., Oikkonen, J., Buck, G., Blancher, C., Raijas, P.,... Järvelä, I. (2013). The genome-wide landscape of copy number variations in the MUSGEN study provides evidence for a founder effect in the isolated Finnish population. European Journal of Human Genetics, 21, 1411-1416.

Kennedy, D., & Norman, C. (2005). What don't we know? Science, 309, 75.

Kleinman, K. (2015). Darwin and Spencer on the origin of music:Is music the food of love? In E. Altenmuller, S. Finger, & F. Boller (Eds.), Music, neurology, and neuroscience:Evolution, the musical brain, medical conditions, and therapies (Vol. 217, pp. 3-15). Netherlands:Elsevier.

Krumhansl, C. L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126, 159-179.

Large, E. W., & Gray, P. M. (2015). Spontaneous tempo and rhythmic entrainment in a bonobo (Pan paniscus). Journal of Comparative Psychology, 129, 317-328.

Larsson, M. (2014). Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities. Animal Cognition, 17, 1-14.

Li, W. J., Yu, H., Yang, J. M., Gao, J., Jiang, H., Feng, M.,... Chen, Z. Y. (2010). Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice. Brain Research, 1347, 71-79.

Liu, X. Y., Kanduri, C., Oikkonen, J., Karma, K., Raijas, P., Ukkola-Vuoti, L.,... Järvelä, I. (2016). Detecting signatures of positive selection associated with musical aptitude in the human genome. Scientific Reports, 6, 21198.

Mallik, A., Chanda, M. L., & Levitin, D. J. (2017). Anhedonia to music and mu-opioids:Evidence from the administration of naltrexone. Scientific Reports, 7, 41952.

Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the United States of America, 113, E7337-E7345.

Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24, 699-704.

McDermott, J. (2008). The evolution of music. Nature, 453, 287-288.

McDermott, J., & Hauser, M. D. (2007). Nonhuman primates prefer slow tempos but dislike music overall. Cognition, 104, 654-668.

Miani, A. (2016). Sexual arousal and rhythmic synchronization:A possible effect of vasopressin. Medical Hypotheses, 93, 122-125.

Miller, G. (2000). Evolution of human music through sexual selection. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 329-360). Cambridge, MA:MIT Press.

Mingle, M. E., Eppley, T. M., Campbell, M. W., Hall, K., Horner, V., & de Waal, F. (2014). Chimpanzees prefer African and Indian music over silence. Journal of Experimental Psychology:Animal Learning and Cognition, 40, 502-505.

Mithen, S. J. (2007). Music and the origin of modern humans. In P. Mellars, K. Boyle, O. Bar-Yosef, & C. Stringer (Eds.), Rethinking the Human Revolution (pp. 107-117). Cambridge:McDonald Institute.

Mosing, M. A., Madison, G., Pedersen, N. L., Kuja-Halkola, R., & Ullén, F. (2014). Practice does not make perfect:No causal effect of music practice on music ability. Psychological Science, 25, 1795-1803.

Mosing, M. A., Madison, G., Pedersen, N. L., & Ullén, F. (2016). Investigating cognitive transfer within the framework of music practice:Genetic pleiotropy rather than causality. Developmental Science, 19, 504-512.

Mosing, M. A., Pedersen, N. L., Madison, G., & Ullén, F. (2014). Genetic pleiotropy explains associations between musical auditory discrimination and intelligence. PLoS One, 9, e113874.

Mosing, M. A., Vervveij, K. J. H., Madison, G., Pedersen, N. L., Zietsch, B. P., & Ullén, F. (2015). Did sexual selection shape human music? Testing predictions from the sexual selection hypothesis of music evolution using a large genetically informative sample of over 10, 000 twins. Evolution and Human Behavior, 36, 359-366.

Naj, A. C., Park, Y. S., & Beaty, T. H. (2012). Detecting familial aggregation. In R. C. Elston, J. M. Satagopan, & S. Y. Sun (Eds.), Statistical human genetics:Methods and protocols (pp. 119-150). New York:Humana Press.

Oikkonen, J., Huang, Y., Onkamo, P., Ukkola-Vuoti, L., Raijas, P., Karma, K.,... Järvelä, I. (2015). A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions. Molecular Psychiatry, 20, 275-282.

Oikkonen, J., & Järvelä, I. (2014). Genomics approaches to study musical aptitude. BioEssays, 36, 1102-1108.

Oikkonen, J., Kuusi, T., Peltonen, P., Raijas, P., Ukkola-Vuoti, L., Karma, K.,... Järvelä, I. (2016). Creative activities in music-A genome-wide linkage analysis. PLoS One, 11, e0148679.

Palmer, C., Lidji, P., & Peretz, I. (2014). Losing the beat:Deficits in temporal coordination. Philosophical Transactions of the Royal Society B:Biological Sciences, 369, 20130405.

Patel, A. D. (2006). Musical rhythm, linguistic rhythm, and human evolution. Music Perception, 24, 99-104.

Patel, A. D. (2008a). Music, language, and the brain. New York, NY:Oxford University Press.

Patel, A. D. (2008b). Science & music:Talk of the tone. Nature, 453, 726-727.

Patel, A. D. (2014). The evolutionary biology of musical rhythm:Was darwin wrong? PLoS Biology, 12, e1001821.

Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19, 827-830.

Payne, K. (2000). The progressively changing songs of humpback whales:A window on the creative process in a wild animal. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 135-150). Cambridge, MA:MIT Press.

Peretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B. (2002). Congenital amusia:A disorder of fine-grained pitch discrimination. Neuron, 33, 185-191.

Peretz, I., Champod, A. S., & Hyde, K. (2003). Varieties of musical disorders. Annals of the New York Academy of Sciences, 999, 58-75.

Peretz, I., Cummings, S., & Dubé, M.-P. (2007). The genetics of congenital amusia (tone deafness):A family-aggregation study. The American Journal of Human Genetics, 81, 582-588.

Peretz, I., & Vuvan, D. T. (2017). Prevalence of congenital amusia. European Journal of Human Genetics, 25, 625-630.

Perlovsky, L. (2015). Origin of music and embodied cognition. Frontiers in Psychology, 6, 538.

Perlovsky, L. (2016). The ANN and learning systems in brains and machines. In Handbook on computational intelligence:Volume 1:Fuzzy logic, systems, artificial neural networks, and learning systems (pp. 281-316). Singapore:World Scientific Publishing.

Perlovsky, L. (2017). Music, passion, and cognitive function. Cambridge, MA:Academic Press.

Phillips-Silver, J., Toiviainen, P., Gosselin, N., & Peretz, I. (2013). Amusic does not mean unmusical:Beat perception and synchronization ability despite pitch deafness. Cognitive Neuropsychology, 30, 311-331.

Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf:A new form of congenital amusia. Neuropsychologia, 49, 961-969.

Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat:Movement influences infant rhythm perception. Science, 308, 1430-1430.

Pinker, S. (1999). How the mind works. Annals of the New York Academy of Sciences, 882, 119-127.

Platel, H., Price, C., Baron, J. C., Wise, R., Lambert, J., Frackowiak, R. S. J.,... Eustache, F. (1997). The structural components of music perception:A functional anatomical study. Brain, 120, 229-243.

Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderheiser, J. (2013). Behavioral genetics. New York, NY:Palgrave Macmillan.

Profita, J., Bidder, T. G., Optiz, J. M., & Reynolds, J. F. (1988). Perfect pitch. American Journal of Medical Genetics, 29, 763-771.

Pulli, K., Karma, K., Norio, R., Sistonen, P., Göring, H. H. H., & Järvelä, I. (2008). Genome-wide linkage scan for loci of musical aptitude in Finnish families:Evidence for a major locus at 4q22. Journal of Medical Genetics, 45, 451-456.

Ravignani, A., Fitch, W. T., Hanke, F. D., Heinrich, T., Hurgitsch, B., Kotz, S. A.,... de Boer, B. (2016). What pinnipeds have to say about human speech, music, and the evolution of rhythm. Frontiers in Neuroscience, 10, 274.

Reichmuth, C., & Casey, C. (2014). Vocal learning in seals, sea lions, and walruses. Current Opinion in Neurobiology, 28, 66-71.

Repp, B. H. (2005). Sensorimotor synchronization:A review of the tapping literature. Psychonomic Bulletin & Review, 12, 969-992.

Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization:A review of recent research (2006-2012). Psychonomic Bulletin & Review, 20, 403-452.

Roberts, T. F., Gobes, S. M. H., Murugan, M., Ölveczky, B. P., & Mooney, R. (2012). Motor circuits are required to encode a sensory model for imitative learning. Nature Neuroscience, 15, 1454-1459.

Roberts, T. F., & Mooney, R. (2013). Motor circuits help encode auditory memories of vocal models used to guide vocal learning. Hearing Research, 303, 48-57.

Roederer, J. G. (1984). The search for a survival value of music. Music Perception, 1, 350-356.

Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous motor entrainment to music in multiple vocal mimicking species. Current Biology, 19, 831-836.

Seesjärvi, E., Särkämö, T., Vuoksimaa, E., Tervaniemi, M., Peretz, I., & Kaprio, J. (2016). The nature and nurture of melody:A twin study of musical pitch and rhythm perception. Behavior Genetics, 46, 506-515.

Sievers, B., Polansky, L., Casey, M., & Wheatley, T. (2013). Music and movement share a dynamic structure that supports universal expressions of emotion. Proceedings of the National Academy of Sciences of the United States of America, 110, 70-75.

Sloboda, J. (2008). Science and music:The ear of the beholder. Nature, 454, 32-33.

Solomon, E. P., Berg, L. R., & Martin, D. W. (2011). Biology (9th ed.). Belmont, CA:Brooks/Cole, Cengage Learning.

Spencer, H. (1857). The origin and function of music. Fraser's Magazine, 56, 396-408.

Tan, Y. T., McPherson, G. E., Peretz, I., Berkovic, S. F., & Wilson, S. J. (2014). The genetic basis of music ability. Frontiers in Psychology, 5, 658.

Teie, D. (2016). A comparative analysis of the universal elements of music and the fetal environment. Frontiers in Psychology, 7, 1158.

Theusch, E., Basu, A., & Gitschier, J. (2009). Genome-wide study of families with absolute pitch reveals linkage to 8q24.21 and locus heterogeneity. American Journal of Human Genetics, 85, 112-119.

Theusch, E., & Gitschier, J. (2011). Absolute pitch twin study and segregation analysis. Twin Research and Human Genetics, 14, 173-178.

Trainor, L. (2008). Science & music:The neural roots of music. Nature, 453, 598-599.

Trainor, L. J., & Cirelli, L. (2015). Rhythm and interpersonal synchrony in early social development. Annals of the New York Academy of Sciences, 1337, 45-52.

Trainor, L. J., & Unrau, A. (2012). Development of pitch and music perception. In L. Werner, R. R. Fay, & A. N. Popper (Eds.), Human auditory development (pp. 223-254). New York, NY:Springer.

Trehub, S. E. (2000). Human processing predispositions and musical universals. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 427-448). Cambridge, MA:MIT Press.

Trehub, S. E. (2003). The developmental origins of musicality. Nature Neuroscience, 6, 669-673.

Uchiyama, M., Jin, X., Zhang, Q., Amano, A., Watanabe, T., & Niimi, M. (2012). Music exposure induced prolongation of cardiac allograft survival and generated regulatory CD4+ cells in mice. Transplantation Proceedings, 44, 1076-1079.

Ukkola, L. T., Onkamo, P., Raijas, P., Karma, K., & Järvelä, I. (2009). Musical aptitude is associated with AVPR1A-Haplotypes. PLoS One, 4, e5534.

Ukkola-Vuoti, L., Kanduri, C., Oikkonen, J., Buck, G., Blancher, C., Raijas, P.,... Järvelä, I. (2013). Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS One, 8, e56356.

Wallin, N. L. (1982). Den musikaliska hjärnan:en kritisk essä om musik och perception i biologisk belysning (Unpublished doctorial dissertation). University of Gothenburg.

Wallin, N. L. (1991). Biomusicology:Neurophysiological, neuropsychological and evolutionary perspectives on the origins and purposes of music. New York, NY:Pendragon Press.

Wallin, N. L., Merker, B., & Brown, S. (2001). The origins of music. Cambridge, MA:MIT Press.

Wang, T. Y. (2015). A hypothesis on the biological origins and social evolution of music and dance. Frontiers in Neuroscience, 9, 30.

Wood, G. A. (1984). Tool use by the palm cockatoo Probosciger aterrimus during display. Corella, 8, 94-95.

Xing, Y. S., Chen, W. X., Wang, Y. R., Jing, W., Gao, S., Guo, D. Q.,... Yao, D. Z. (2016). Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats. Brain Research Bulletin, 121, 131-137.

Xing, Y. S., Qin, Y., Jing, W., Zhang, Y. X., Wang, Y. R., Guo, D. Q.,... Yao, D. Z. (2016). Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats. Cognitive Neurodynamics, 10, 23-30.

Zanette, D. (2008). Playing by numbers. Nature, 453, 988-989.

Zatorre, R. J. (2015). Musical pleasure and reward:Mechanisms and dysfunction. Annals of the New York Academy of Sciences, 1337, 202-211.

Zentner, M., & Eerola, T. (2010). Rhythmic engagement with music in infancy. Proceedings of the National Academy of Sciences of the United States of America, 107, 5768-5773.

Zentner, M. R., & Kagan, J. (1996). Perception of music by infants. Nature, 383, 29.

Zhang, J. Z., Harbottle, G., Wang, C. S., & Kong, Z. C. (1999). Oldest playable musical instruments found at Jiahu early Neolithic site in China. Nature, 401, 366-368.