DOI: 10.3724/SP.J.1042.2017.01865

Advances in Psychological Science (心理科学进展) 2017/25:11 PP.1865-1876

The cognitive and neural mechanisms of absolute pitch

Absolute pitch (AP) is a rare ability to process music pitch; it also has the special cognitive and neural basis. The studies by event-related potentials showed that AP musicians use less working memory but with multiple cognitive strategies during AP processing. Functional neuroimaging studies showed that the left posterior dorsolateral frontal cortex and the left planum temporale are very important to AP musicians, but the involvements in some right cerebral regions indicate the increased load and difficulty during pitch processing in quasi-AP musicians. Structural neuroimaging studies showed the special morphometry of the left planum temporale as well as the white matter structure in AP musicians. Future research needs to further divide AP ability into "with relative pitch ability" and "without relative pitch ability" together with their cognitive and neural basis, and investigate the effect of gene polymorphism on AP ability through imaging genomics, and also necessarily examine the neural basis of pitch processing in the musicians with native tonal language.

Key words:absolute pitch,functional correlate,structural correlate

ReleaseDate:2017-12-29 17:51:39

蔡振家. (2004). 绝对音感的认知心理学研究. 关渡音乐学刊, (1), 77-92.

蔡振家. (2014). 音乐认知心理学 (第二版, pp. 46-53). 台北:"国立"台湾大学出版中心.

陈芳, 刘沛, 李妲娜. (2009). 绝对音高现象的研究现状及展望. 星海音乐学院学报, (4), 96-101.

海棠, 周临舒, 蒋存梅. (2017). 绝对音高者对音乐的加工及其神经机制. 心理科学, 40(1), 51-57.

何清华. (2010). 情绪在风险决策加工中的重要性:基因-脑-行为的多角度研究 (博士学位论文). 北京师范大学.

侯建成, 董奇. (2011). 音乐绝对音高信息加工的脑机制. 心理科学进展, 19(9), 1306-1312.

侯建成, 刘昌. (2008). 国外有关音乐活动的脑机制的研究概述——兼及"莫扎特效应". 中央音乐学院学报, (1), 110-118.

梁夏, 王金辉, 贺永. (2010). 人脑连接组研究:脑结构网络和脑功能网络. 科学通报, 55(16), 1565-1583.

魏景汉, 罗跃嘉. (2002). 认知事件相关脑电位教程 (pp. 101-105). 北京:经济日报出版社.

Altarelli, I., Leroy, F., Monzalvo, K., Fluss, J., Billard, C., Dehaene-Lambertz, … Ramus, F. (2014). Planum temporale asymmetry in developmental dyslexia:Revisiting an old question. Human Brain Mapping, 35, 5717-5735.

Bachem, A. (1955). Absolute pitch. The Journal of the Acoustical Society of America, 27, 1180-1185.

Baddeley, A. (2003). Working memory:Looking back and looking forward. Nature Reviews Neuroscience, 4, 829-839.

Baharloo, S., Johnston, P. A., Service, S. K., Gitschier, J., & Freimer, N. B. (1998). Absolute pitch:An approach for identification of genetic and nongenetic components. American Journal of Human Genetics, 62, 224-231.

Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19, 1583-1596.

Bermudez, P., & Zatorre, R. J. (2005). Conditional associative memory for musical stimuli in nonmusicians:Implications for absolute pitch. Journal of Neuroscience, 25, 7718-7723.

Berti, S., & Roeber, U. (2013). Encoding into visual working memory:Event-related brain potentials reflect automatic processing of seemingly redundant information. Neuroscience Journal, 2013, Article ID 172614.

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767-2796.

Blackwood, D. H., & Muir, W. J. (1990). Cognitive brain potentials and their application. The British Journal of Psychiatry, 157, 96-101.

Bogousslavsky, J., Miklossy, J., Deruaz, J. P., Regli, F., & Assal, G. (1986). Unilateral left paramedian infarction of thalamus and midbrain:A clinico-pathological study. Journal of Neurology, Neurosurgery, and Psychiatry, 49, 686-694.

Brown, C. R., Clarke, A. R., & Barry, R. J. (2007). Auditory processing in an inter-modal oddball task:Effects of a combined auditory/visual standard on auditory target ERP. International Journal of Psychophysiology, 65, 122-131.

Bullmore, E., & Sporns, O. (2009). Complex brain networks:Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198.

Burns, E. M., & Campbell, S. L. (1994). Frequency and frequency-ratio resolution by possessors of absolute and relative pitch:Examples of categorical perception? Journal of the Acoustical Society of America, 96, 2704-2719.

Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia:History and current state. Cortex, 44, 953-961.

Chin, C. S. (2003). The development of absolute pitch:A theory concerning the roles of music training at an early developmental age and individual cognitive style. Psychology of Music, 31, 155-171.

Chung, K. K. H., Tong, X. H., & McBride-Chang, C. (2012). Evidence for a deficit in orthographic structure processing in Chinese developmental dyslexia:An event-related potential study. Brain Research, 1472, 20-31.

Clark, D. L., Boutros, N. N., & Mendez, M. F. (2010). The brain and behavior:An introduction to behavioral neuroanatomy (p. 62). Cambridge:Cambridge University Press.

Crummer, G. C., Walton, J. P., Wayman, J. W., Hantz, E. C., & Frisina, R. D. (1994). Neural processing of musical timbre by musicians, nonmusicians, and musicians possessing absolute pitch. The Journal of the Acoustical Society of America, 95, 2720-2727.

D'Amato, M. R. (1988). A search for tonal pattern perception in cebus monkeys:Why monkeys can't hum a tune. Music Perception, 5, 453-480.

Delisi, L. E., Hoff, A. L., Neale, C., & Kushner, M. (1994). Asymmetries in the superior temporal lobe in male and female first-episode schizophrenic patients:Measures of the planum temporale and superior temporal gyrus by MRI. Schizophrenia Research, 12, 19-28.

Deutsch, D. (2013). Absolute pitch. In D. Deutsch (Ed.), The psychology of music (3rd ed., pp. 141-182). San Diego, CA:Academic Press.

Deutsch, D., Dooley, K., Henthorn, T., & Head, B. (2009). Absolute pitch among students in an American music conservatory:Association with tone language fluency. Journal of the Acoustical Society of America, 125, 2398-2403.

Deutsch, D., Henthorn, T., & Dolson, M. (2004). Absolute pitch, speech, and tone language:Some experiments and a proposed framework. Music Perception, 21(3), 339-356.

Deutsch, D., Henthorn, T., Marvin, E., & Xu, H. S. (2006). Absolute pitch among American and Chinese conservatory students:Prevalence differences, and evidence for a speech-related critical period. The Journal of the Acoustical Society of America, 119, 719-722.

Deutsch, D., Kuyper, W. L., & Fisher, Y. (1987). The tritone paradox:Its presence and form of distribution in a general population. Music Perception, 5(1), 79-92.

Dohn, A., Garza-Villarreal, E. A., Chakravarty, M. M., Hansen, M., Lerch, J. P., & Vuust, P. (2015). Gray-and white-matter anatomy of absolute pitch possessors. Cerebral Cortex, 25(5), 1379-1388.

Elmer, S., Sollberger, S., Meyer, M., & Jäncke, L. (2013). An empirical reevaluation of absolute pitch:Behavioral and electrophysiological measurements. Journal of Cognitive Neuroscience, 25(10), 1736-1753.

Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10, 590-604.

Foundas, A. L., Bollich, A. M., Corey, D. M., Hurley, M., & Heilman, K. M. (2001). Anomalous anatomy of speech-language areas in adults with persistent developmental stuttering. Neurology, 57, 207-215.

Friederici, A. D. (2009). Allocating functions to fiber tracts:Facing its indirectness. Trends in Cognitive Sciences, 13, 370-371.

Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity:A review of underlying mechanisms. Clinical Neurophysiology, 120, 453-463.

Glasser, M. F., & Rilling, J. K. (2008). DTI tractography of the human brain's language pathways. Cerebral Cortex, 18, 2471-2482.

Goerlich, K. S., Witteman, J., Schiller, N. O., van Heuven, V. J., Aleman, A., & Martens, S. (2012). The nature of affective priming in music and speech. Journal of Cognitive Neuroscience, 24, 1725-1741.

Gregersen, P. K., Kowalsky, E., Kohn, N., & Marvin, E. W. (1999). Absolute pitch:Prevalence, ethnic variation, and estimation of the genetic component. The American Journal of Human Genetics, 65, 911-913.

Gregersen, P. K., Kowalsky, E., Kohn, N., & Marvin, E. W. (2001). Early childhood music education and predisposition to absolute pitch:Teasing apart genes and environment. American Journal of Human Genetics, 98, 280-282.

Gregersen, P. K., Kowalsky, E., Lee, A., Baron-Cohen, S., Fisher, S. E., Asher, J. E., … Li, W. T. (2013). Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Human Molecular Genetics, 22(10), 2097-2104.

Gregersen, P. K., & Kumar, S. (1996). The genetics of perfect pitch. American Journal of Human Genetics, 59(Suppl.), A179.

Griffiths, T. D., Johnsrude, I., Dean, J. L., & Green, G. G. R. (1999). A common neural substrate for the analysis of pitch and duration pattern in segmented sound? NeuroReport, 10, 3825-3830.

Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in Neurosciences, 25, 348-353.

Halsband, U., & Freund, H. J. (1990). Premotor cortex and conditional motor learning in man. Brain, 113, 207-222.

Henthorn, T., & Deutsch, D. (2007). Ethnicity versus early environment:Comment on ‘Early childhood music education and predisposition to absolute pitch:Teasing apart genes and environment’ by Peter K. Gregersen, Elena Kowalsky, Nina Kohn, and Elizabeth West Marvin[2000]. American Journal of Medical Genetics Part A, 143A (1), 102-103.

Heywood, C. A., Gaffan, D., & Cowey, A. (1995). Cerebral achromatopsia in monkeys. European Journal of Neurology, 7, 1064-1073.

Hirose, H., Kubota, M., Kimura, I., Ohsawa, M., Yumoto, M., & Sakakihara, Y. (2002). People with absolute pitch process tones with producing P300. Neuroscience Letters, 330, 247-250.

Hou, J. C., Chen, C. S., & Dong, Q. (2015). Resting-state functional connectivity and pitch identification ability in non-musicians. Frontiers in Neuroscience, 9, 7.

Hou, J. C., Chen, C. S., Wang, Y. P., Liu, Y. Y., He, Q. H., Li, J., & Dong, Q. (2014). Superior pitch identification ability is associated with better executive functions. Psychomusicology:Music, Mind, and Brain, 24(2), 136-146.

Hsieh, I., & Saberi, K. (2008). Dissociation of procedural and semantic memory in absolute-pitch processing. Hearing Research, 240, 73-79.

Hulse, S. H., & Cynx, J. (1985). Relative pitch perception is constrained by absolute pitch in songbirds (Mimus, Molothrus, and Sturnus). Journal of Comparative Psychology, 99, 176-196.

Hulse, S. H., & Page, S. C. (1988). Toward a comparative psychology of music perception. Music Perception, 5, 427-452.

Ishai, A., Haxby, J. V., & Ungerleider, L. G. (2002). Visual imagery of famous faces:Effects of memory and attention revealed by fMRI. NeuroImage, 17(4), 1729-1741.

James, C. E., Oechslin, M. S., van De Ville, D., Hauert, C. A., Descloux, C., & Lazeyras, F. (2014). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure and Function, 219, 353-366.

Jäncke, L., Langer, N., & Hänggi, J. (2012). Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians. Journal of Cognitive Neuroscience, 24, 1447-1461.

Keenan, J. P., Thangaraj, V., Halpern, A. R., & Schlaug, G. (2001). Absolute pitch and planum temporale. NeuroImage, 14, 1402-1408.

Kier, E. L., Staib, L. H., Davis, L. M., & Bronen, R. A. (2004). MR imaging of the temporal stem:Anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer's loop of the optic radiation. American Journal of Neuroradiology, 25, 677-691.

Klein, M., Coles, M. G. H., & Donchin, E. (1984). People with absolute pitch process tones without producing a P300. Science, 223, 1306-1309.

Kostopoulos, P., & Petrides, M. (2003). The mid-ventrolateral prefrontal cortex:Insights into its role in memory retrieval. European Journal of Neuroscience, 17, 1489-1497.

Levitin, D. J. (1994). Absolute memory for musical pitch:Evidence from the production of learned melodies. Perception & Psychophysics, 56, 414-423.

Levitin, D. J. (1999). Absolute pitch:Self-reference and human memory. International Journal of Computing Anticipatory Systems, 4, 255-266.

Levitin, D. J., & Rogers, S. E. (2005). Absolute pitch:Perception, coding, and controversies. Trends in Cognitive Sciences, 9, 26-33.

Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness:A new disconnection syndrome? Journal of Neuroscience, 29, 10215-10220.

Loui, P., Li, H. C., Hohmann, A., & Schlaug, G. (2011). Enhanced cortical connectivity in absolute pitch musicians:A model for local hyperconnectivity. Journal of Cognitive Neuroscience, 23, 1015-1026.

Loui, P., Zamm, A., & Schlaug, G. (2012). Enhanced functional networks in absolute pitch. NeuroImage, 63, 632-640.

Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R. P., Caviness, V. S., Jr., & Pandya, D. N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans:A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15, 854-869.

McGuire, P. K., Silbersweig, D. A., Wright, I., Murray, R. M., David, A. S., Frackowiak, R. S., & Frith, C. D. (1995). Abnormal monitoring of inner speech:A physiological basis for auditory hallucinations. The Lancet, 346, 596-600.

Miyazaki, K. (1993). Absolute pitch as an inability:Identification of musical intervals in a tonal context. Music Perception, 11, 55-71.

Miyazaki, K. (1995). Perception of relative pitch with different references:Some absolute-pitch listeners can't tell musical interval names. Perception and Psychophysics, 57, 962-970.

Moldin, S. O., & Gottesman, I. I. (1997). Genes, experience, and chance in schizophrenia——Positioning for the 21st century. Schizophrenia Bulletin, 23(4), 547-561.

Naatanen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313-329.

Oechslin, M. S., Imfeld, A., Loenneker, T., Meyer, M., & Jäncke, L. (2010). The plasticity of the superior longitudinal fasciculus as a function of musical expertise:A diffusion tensor imaging study. Frontiers in Human Neuroscience, 3, 76.

Ohara, S., Lenz, F., & Zhou, Y. D. (2006). Sequential neural processes of tactile-visual crossmodal working memory. Neuroscience, 139, 299-309.

Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., … Imabayashi, E. (2001). Functional anatomy of musical perception in musicians. Cerebral Cortex, 11, 754-760.

Onitsuka, T., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Kasai, K., Toner, S. K., … McCarley, R. W. (2004). Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia:An MRI study. American Journal of Psychiatry, 161, 1603-1611.

Owen, A. M., Milner, B., Petrides, M., & Evans, A. C. (1996). Memory for object features versus memory for object location:A positron-emission tomography study of encoding and retrieval processes. Proceedings of the National Academy of Sciences of the United States of America, 93, 9212-9217.

Parker, G. J. M., Luzzi, S., Alexander, D. C., Wheeler-Kingshott, C. A. M., Clecarelli, O., & Ralph, M. A. L. (2005). Lateralization of ventral and dorsal auditory-language pathways in the human brain. NeuroImage, 24, 656-666.

Parncutt, R., & Levitin, D. J. (2001). Absolute pitch. In S. Sadie (Ed.), The new grove dictionary of music and musicians (pp. 37-39). London, England:MacMillan.

Petrides, M. (1990). Nonspatial conditional learning impaired in patients with unilateral frontal but not unilateral temporal lobe excisions. Neuropsychologia, 28, 137-149.

Petrides, M. (1995). Functional organization of the human frontal cortex for mnemonic processing:Evidence from neuroimaging studies. Annals of the New York Academy of Sciences, 769, 85-96.

Petrides, M., Alivisatos, B., Evans, A., & Meyer, E. (1993). Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proceedings of the National Academy of Sciences of the United States of America, 90, 873-877.

Petrides, M., & Pandya, D. N. (1988). Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. The Journal of Comparative Neurology, 273, 52-66.

Phillips, O. R., Clark, K. A., Woods, R. P., Subotnik, K. L., Asarnow, R. F., … Narr, K. L. (2011). Topographical relationships between arcuate fasciculus connectivity and cortical thickness. Human Brain Mapping, 32, 1788-1801.

Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity:Different water in the same river. Audiology and Neurotology, 5, 111-139.

Platel, H., Baron, J. C., Desgranges, B., Bernard, F., & Eustache, F. (2003). Semantic and episodic memory of music are subserved by distinct neural networks. NeuroImage, 20, 244-256.

Polich, J. (2007). Updating P300:An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148.

Profita, J., Bidder, T. G., Optiz, J. M., & Reynolds, J. F. (1988). Perfect pitch. American Journal of Medical Genetics, 29, 763-771.

Rawdon, C., Murphy, J., Blanchard, M. M., Kelleher, I., Clarke, M. C., Kavanagh, F., … Roche, R. A. P. (2013). Reduced P300 amplitude during retrieval on a spatial working memory task in a community sample of adolescents who report psychotic symptoms. BMC Psychiatry, 13, 125.

Renninger, L. B., Granot, R. I., & Donchin, E. (2003). Absolute pitch and the p300 component of the event-related potential:An exploration of variables that may account for individual differences. Music Perception, 20, 357-382.

Roeber, U., Berti, S., & Schröger, E. (2003). Auditory distraction with different presentation rates:An event-related potential and behavioral study. Clinical Neurophysiology, 114, 341-349.

Rogenmoser, L. Elmer, S., & Jäncke, L. (2015). Absolute pitch:Evidence for early cognitive facilitation during passive listening as revealed by reduced p3a amplitudes. Journal of Cognitive Neuroscience, 27, 623-637.

Ross, D. A., Olson, I. R., & Gore, J. C. (2003). Absolute pitch does not depend on early musical training. Annals of the New York Academy of Sciences, 999, 522-526.

Ross, D. A., Olson, I. R., Marks, L. E., & Gore, J. C. (2004). A nonmusical paradigm for identifying absolute pitch possessors. The Journal of Acoustical Society of America, 116(3), 1793-1799.

Ruhnau, P., Wetzel, N., Widmann, A., & Schröger, E. (2010). The modulation of auditory novelty processing by working memory load in school age children and adults:A combined behavioral and event-related potential study. BMC Neuroscience, 11, 126.

Saffran, J. R., & Griepentrog, G. J. (2001). Absolute pitch in infant auditory learning:Evidence for developmental reorganization. Developmental Psychology, 37(1), 74-85.

Schlaug, G., Jäncke, L., Huang, Y., & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267, 699-701.

Schmithorst, V. J. (2005). Separate cortical networks involved in music perception:Preliminary functional MRI evidence for modularity of music processing. NeuroImage, 25, 444-451.

Schomaker, J., & Meeter, M. (2014). Novelty detection is enhanced when attention is otherwise engaged:An event-related potential study. Experimental Brain Research, 232, 995-1011.

Schön, D., Magne, C., & Besson, M. (2004). The music of speech:Music training facilitates pitch processing in both music and language. Psychophysiology, 41, 341-349.

Schröger, E., & Wolff, C. (1998). Attentional orienting and reorienting is indicated by human event-related brain potentials. Neuroreport, 9, 3355-3358.

Schulze, K., Gaab, N., & Schlaug, G. (2009). Perceiving pitch absolutely:Comparing absolute and relative pitch possessors in a pitch memory task. BMC Neuroscience, 10, 106.

Schulze, K., Mueller, K., & Koelsch, S. (2013). Auditory Stroop and absolute pitch:An fMRI study. Human Brain Mapping, 34, 1579-1590.

Schürmann, M., Raij, T., Fujiki, N., & Hari, R. (2002). Mind's ear in a musician:Where and when in the brain. NeuroImage, 16(2), 434-440.

Schwenzer, M., & Mathiak, K. (2011). Numeric aspects in pitch identification:An fMRI study. BMC Neuroscience, 12, 26.

Siegel, J. A. (1974). Sensory and verbal coding strategies in subjects with absolute pitch. Journal of Experimental Psychology, 103, 37-44.

Steiner, G. Z., Barry, R. J., & Gonsalvez, C. J. (2013). Can working memory predict target-to-target interval effects in the P300? International Journal of Psychophysiology, 89, 399-408.

Stewart, L., Henson, R., Kampe, K., Walsh, V., Turner, R., & Frith, U. (2003). Brain changes after learning to read and play music. NeuroImage, 20, 71-83.

Takeuchi, A., & Hulse, S. H. (1993). Absolute pitch. Psychological Bulletin, 113, 345-361.

Theusch, E., Basu, A., & Gitschier, J. (2009). Genome-wide study of families with absolute pitch reveals linkage to 8q24.21 and locus heterogeneity. The American Journal of Human Genetics, 85(1), 112-119.

Tooze, Z. J., Harrington, F. H., & Fentress, J. C. (1990). Individually distinct vocalizations in timber wolves, Canis lupus. Animal Behaviour, 40, 723-730.

Wakana, S., Jiang, H. Y., Nagae-Poetscher, L. M., van Zijl, P. C. M., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230, 77-87.

Wan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. The Neuroscientist, 16, 566-577.

Wang, Z. J., Dai, Z. J., Gong, G. L., Zhou, C. S., & He, Y. (2015). Understanding structural-functional relationships in the human brain:A large-scale network perspective. The Neuroscientist, 21(3), 290-305.

Wayman, J. W., Frisina, R. D., Walton, J. P., Hantz, E. C., & Crummer, G. C. (1992). Effects of musical training and absolute pitch ability on event-related activity in response to sine tones. The Journal of the Acoustical Society of America, 91, 3527-3533.

Wengenroth, M., Blatow, M., Heinecke, A., Reinhardt, J., Stippich, C., Hofmann, E., & Schneider, P. (2014). Increased volume and function of right auditory cortex as a marker for absolute pitch. Cerebral Cortex, 24, 1127-1137.

Wetzel, N., & Schröger, E. (2007). Modulation of involuntary attention by the duration of novel and pitch deviant sounds in children and adolescents. Biological Psychology, 75, 24-31.

Wilson, S. J., Lusher, D., Wan, C. Y., Dudgeon, P., & Reutens, D. C. (2006). Imaging the neurocognitive components of pitch naming:Insights from quasi-absolute pitch. In M. Baroni, A. R. Addessi, R. Caterina, & M. Costa (Eds.), Proceedings of 9th international conference on music perception and cognition (pp. 825-833). Liege, Belgium:The Society for Music Perception & Cognition (SMPC).

Wilson, S. J., Lusher, D., Wan, C. Y., Dudgeon, P., & Reutens, D. C. (2009). The neurocognitive components of pitch processing:Insights from absolute pitch. Cerebral Cortex, 19, 724-732.

Worsley, K. J., Marrett, S., Neelin, P., & Evans, A. C. (1996). Searching scale space for activation in PET images. Human Brain Mapping, 4, 74-90.

Zatorre, R. J. (2003). Absolute pitch:A model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 6, 692-695.

Zatorre, R. J., & Beckett, C. (1989). Multiple coding strategies in the retention of musical tones by possessors of absolute pitch. Memory and Cognition, 17, 582-589.

Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music:Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547-558.

Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the United States of America, 95, 3172-3177.