DOI: 10.3724/SP.J.1042.2017.01877

Advances in Psychological Science (心理科学进展) 2017/25:11 PP.1877-1887

Neural plasticity to musical performance training: A meta-analysis study

Musical performance is one of the most complex and sophisticated skills in humans. The present study used the activation likelihood estimation, a coordinate-based quantitative meta-analysis approach, to investigate the neural plasticity induced by the training of musical performance. The results showed that brain differences between musical performers and nonmusicians existed in the regions of left cerebellar, bilateral precentral gyri, bilateral superior temporal gyri, left inferior frontal gyrus, bilateral inferior parietal lobule, and right insula. These brain regions are related to auditory processing, motor processing, and multimodal integration. Future study would distinguish the neural adaptation induced by different kinds of musical performance training to explore completely relationship between musical performance and brain plasticity.

Key words:musical performance,training,neural plasticity,meta-analysis,activation likelihood estimation

ReleaseDate:2017-12-29 17:51:40

蒋存梅. (2002). 论音乐作品的音响呈现方式. 中国音乐学, (1), 85-100.

Abdul-Kareem, I. A., Stancak, A., Parkes, L. M., & Sluming, V. (2011). Increased gray matter volume of left pars opercularis in male orchestral musicians correlate positively with years of musical performance. Journal of Magnetic Resonance Imaging, 33(1), 24-32.

Avillac, M., Denève, S., Olivier, E., Pouget, A., & Duhamel, J.-R. (2005). Reference frames for representing visual and tactile locations in parietal cortex. Nature Neuroscience, 8(7), 941-949.

Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory:Evidence from positron emission tomography. Psychological Science, 7(1), 25-31.

Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 2883-2901.

Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2014). Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. Journal of Cognitive Neuroscience, 26(4), 755-767.

*Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H.,... Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists:Evidence from fMRI conjunction. NeuroImage, 30(3), 917-926.

*Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65-78.

Bengtsson, S. L., & Ullén, F. (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30(1), 272-284.

Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19(7), 1583-1596.

Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818-11823.

Brown, R. M., Zatorre, R. J., & Penhune, V. B. (2015). Expert music performance:Cognitive, neural, and developmental bases. Progress in Brain Research, 217, 57-86.

Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008a). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844-2854.

*Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008b). Moving on time:Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20(2), 226-239.

*Choi, U.-S., Sung, Y.-W., Hong, S., Chung, J.-Y., & Ogawa, S. (2015). Structural and functional plasticity specific to musical training with wind instruments. Frontiers in Human Neuroscience, 9, 597.

Dapretto, M., & Bookheimer, S. Y. (1999). Form and content:Dissociating syntax and semantics in sentence comprehension. Neuron, 24(2), 427-432.

Dhanjal, N. S., Handunnetthi, L., Patel, M. C., & Wise, R. J. (2008). Perceptual systems controlling speech production. Journal of Neuroscience, 28(40), 9969-9975.

Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732-739.

Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15(2), 161-167.

Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349-2361.

Eickhoff, S. B., Bzdok, D., Laird, A. R., Roski, C., Caspers, S., Zilles, K., & Fox, P. T. (2011). Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. NeuroImage, 57(3), 938-949.

Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data:A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907-2926.

Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305-307.

Ericsson, K. A., Krampe, R. T., & Heizmann, S. (1993). Can we create gifted people? In G. R. Bock & K. Ackrill (Eds.), The origins and development of high ability (pp. 222-294). Chichester:Wiley.

Ericsson, K. A., Tesch-Römer, C., & Krampe, R. T. (1990). The role of practice and motivation in the acquisition of expert-level performance in real life. In M. J. A. Howe (Ed.), Encouraging the development of exceptional skills and talents (pp. 109-130). Leicester, England:British Psychological Society.

Friederici, A. D., Wang, Y. H., Herrmann, C. S., Maess, B., & Oertel, U. (2000). Localization of early syntactic processes in frontal and temporal cortical areas:A magnetoencephalographic study. Human Brain Mapping, 11(1), 1-11.

*Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23(27), 9240-9245.

Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M., & Poldrack, R. A. (2010). Neural components underlying behavioral flexibility in human reversal learning. Cerebral Cortex, 20(8), 1843-1852.

Giacosa, C., Karpati, F. J., Foster, N. E. V., Penhune, V. B., & Hyde, K. L. (2016). Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. NeuroImage, 135, 273-286.

Goghari, V. M., & MacDonald, A. W., Ⅲ. (2009). The neural basis of cognitive control:Response selection and inhibition. Brain and Cognition, 71(2), 72-83.

Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. NeuroImage, 52(3), 862-874.

Grèzes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to "mirror" and "canonical" neurones in the human brain:An fMRI study. NeuroImage, 18(4), 928-937.

Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893-906.

*Groussard, M., Rauchs, G., Landeau, B., Viader, F., Desgranges, B., Eustache, F., & Platel, H. (2010). The neural substrates of musical memory revealed by fMRI and two semantic tasks. NeuroImage, 53(4), 1301-1309.

*Groussard, M., Viader, F., Landeau, B., Desgranges, B., Eustache, F., & Platel, H. (2014). The effects of musical practice on structural plasticity:The dynamics of grey matter changes. Brain and Cognition, 90, 174-180.

Gruber, O., & von Cramon, D. Y. (2003). The functional neuroanatomy of human working memory revisited:Evidence from 3-T fMRI studies using classical domain-specific interference tasks. NeuroImage, 19(3), 797-809.

Hamzei, F., Rijntjes, M., Dettmers, C., Glauche, V., Weiller, C., & Büchel, C. (2003). The human action recognition system and its relationship to Broca's area:An fMRI study. NeuroImage, 19(3), 637-644.

Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., & Rizzolatti, G. (1998). Activation of human primary motor cortex during action observation:A neuromagnetic study. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 15061-15065.

*Haslinger, B., Erhard, P., Altenmüller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17(2), 282-293.

Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity:Behavior, function, and structure. Neuron, 76(3), 486-502.

Hutchinson, S., Lee, L. H.-L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13(9), 943-949.

Ito, M. (2002). Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Annals of the New York Academy of Sciences, 978, 273-288.

Jäncke, L., Shah, N., & Peters, M. (2000). Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Cognitive Brain Research, 10(1-2), 177-183.

*James, C. E., Oechslin, M. S., van De Ville, D., Hauert, C.-A., Descloux, C., & Lazeyras, F. (2014). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure and Function, 219(1), 353-366.

Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., & Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 274(5284), 114-116.

*Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., & Lotze, M. (2010). The brain of opera singers:Experience-dependent changes in functional activation. Cerebral Cortex, 20(5), 1144-1152.

*Kleber, B., Veit, R., Moll, C. V., Gaser, C., Birbaumer, N., & Lotze, M. (2016). Voxel-based morphometry in opera singers:Increased gray-matter volume in right somatosensory and auditory cortices. NeuroImage, 133, 477-483.

Kleber, B., Zeitouni, A. G., Friberg, A., & Zatorre, R. J. (2013). Experience-dependent modulation of feedback integration during singing:Role of the right anterior insula. Journal of Neuroscience, 33(14), 6070-6080.

Koelsch, S. (2006). Significance of Broca's area and ventral premotor cortex for music-syntactic processing. Cortex, 42(4), 518-520.

Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131-137.

Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music:An fMRI study. NeuroImage, 25(4), 1068-1076.

Koelsch, S., Gunter, T. C., Cramon, D. Y. v., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks:A cortical "language-network" serves the processing of music. NeuroImage, 17(2), 956-966.

Koeneke, S., Lutz, K., Wüstenberg, T., & Jäncke, L. (2004). Bimanual versus unimanual coordination:What makes the difference? NeuroImage, 22(3), 1336-1350.

Krampe, R. T. (1994). Maintaining excellence:Cognitive-motor performance in pianists differing in age and skill level. Berlin:Edition Sigma.

Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound:Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308-314.

*Lee, H., & Noppeney, U. (2011). Long-term music training tunes how the brain temporally binds signals from multiple senses. Proceedings of the National Academy of Sciences of the United States of America, 108(51), E1441-E1450.

Li, J. F., Luo, C., Peng, Y. H., Xie, Q. K., Gong, J. N., Dong, L.,... Yao, D. Z. (2014). Probabilistic diffusion tractography reveals improvement of structural network in musicians. PLoS ONE, 9(8), e105508.

*Lotze, M., Scheler, G., Tan, H.-R., Braun, C., & Birbaumer, N. (2003). The musician's brain:Functional imaging of amateurs and professionals during performance and imagery. NeuroImage, 20(3), 1817-1829.

*Luo, C., Tu, S. P., Peng, Y. H., Gao, S., Li, J. F., Dong, L.,... Yao, D. Z. (2014). Long-term effects of musical training and functional plasticity in salience system. Neural Plasticity, 2014, Article ID 180138.

Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician's brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3(6), 473-478.

Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca's area:An MEG study. Nature Neuroscience, 4(5), 540-545.

Manturzewska, M. (1990). A biographical study of the life-span development of professional musicians. Psychology of Music, 18(2), 112-139.

*Meister, I., Krings, T., Foltys, H., Boroojerdi, B., Müller, M., Töpper, R., & Thron, A. (2005). Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks:Implications for cortical motor organization. Human Brain Mapping, 25(3), 345-352.

Meyer, M., Friederici, A. D., & von Cramon, D. Y. (2000). Neurocognition of auditory sentence comprehension:Event related fMRI reveals sensitivity to syntactic violations and task demands. Cognitive Brain Research, 9(1), 19-33.

Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops:Motor and cognitive circuits. Brain Research Reviews, 31(2-3), 236-250.

Molnar-Szakacs, I., & Overy, K. (2006). Music and mirror neurons:From motion to ‘e’motion. Social Cognitive and Affective Neuroscience, 1(3), 235-241.

O'reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20(4), 953-965.

Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811-814.

Peretz, I., Gosselin, N., Belin, P., Zatorre, R. J., Plailly, J., & Tillmann, B. (2009). Music lexical networks. Annals of the New York Academy of Sciences, 1169(1), 256-265.

Radua, J., van Den Heuvel, O. A., Surguladze, S., & Mataix-Cols, D. (2010). Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Archives of General Psychiatry, 67(7), 701-711.

Salmi, J., Pallesen, K. J., Neuvonen, T., Brattico, E., Korvenoja, A., Salonen, O., & Carlson, S. (2010). Cognitive and motor loops of the human cerebro-cerebellar system. Journal of Cognitive Neuroscience, 22(11), 2663-2676.

Sato, K., Kirino, E., & Tanaka, S. (2015). A voxel-based morphometry study of the brain of university students majoring in music and nonmusic disciplines. Behavioural Neurology, 2015, Article ID 274919.

Schlack, A., Sterbing-D'Angelo, S. J., Hartung, K., Hoffmann, K.-P., & Bremmer, F. (2005). Multisensory space representations in the macaque ventral intraparietal area. Journal of Neuroscience, 25(18), 4616-4625.

Schlaug, G., Jäncke, L., Huang, Y. X., Staiger, J. F., & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33(8), 1047-1055.

Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688-694.

Schulze, K., Zysset, S., Mueller, K., Friederici, A. D., & Koelsch, S. (2011). Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Human Brain Mapping, 32(5), 771-783.

Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience, 23(13), 5545-5552.

Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage, 17(3), 1613-1622.

Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early musical training and white-matter plasticity in the corpus callosum:Evidence for a sensitive period. Journal of Neuroscience, 33(3), 1282-1290.

Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum:A meta-analysis of neuroimaging studies. NeuroImage, 44(2), 489-501.

Tanaka, S., & Kirino, E. (2016). Functional connectivity of the precuneus in female university students with long-term musical training. Frontiers in Human Neuroscience, 10, 328.

Tillmann, B., Janata, P., & Bharucha, J. J. (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145-161.

Tillmann, B., Koelsch, S., Escoffier, N., Bigand, E., Lalitte, P., Friederici, A. D., & von Cramon, D. Y. (2006). Cognitive priming in sung and instrumental music:Activation of inferior frontal cortex. NeuroImage, 31(4), 1771-1782.

Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading:Method and validation. NeuroImage, 16(3), 765-780.

Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1-13.

*Vaquero, L., Hartmann, K., Ripollés, P., Rojo, N., Sierpowska, J., François, C.,... Samii, A. (2016). Structural neuroplasticity in expert pianists depends on the age of musical training onset. NeuroImage, 126, 106-119.

Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255-274.

Wager, T. D., Waugh, C. E., Lindquist, M., Noll, D. C., Fredrickson, B. L., & Taylor, S. F. (2009). Brain mediators of cardiovascular responses to social threat, Part I:Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. NeuroImage, 47(3), 821-835.

Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420-422.

Yarkoni, T. (2009). Big correlations in little studies:Inflated fMRI correlations reflect low statistical power-Commentary on Vul et al. (2009). Perspectives on Psychological Science, 4(3), 294-298.

Yarkoni, T., Poldrack, R. A., Nichols, T. E., van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665-670.

Zarate, J. M., & Zatorre, R. J. (2008). Experience-dependent neural substrates involved in vocal pitch regulation during singing. NeuroImage, 40(4), 1871-1887.

Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music:Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547-558.

Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white:Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528-536.