DOI: 10.3724/SP.J.1042.2018.00433

Advances in Psychological Science (心理科学进展) 2018/26:3 PP.433-441

Gamma oscillations and information binding process

The Gamma oscillation is one kind of neural interaction activities. The characteristics of the Gamma oscillation contribute to its important role in information binding process. A large body of research has demonstrated that binding the sensory signal from multiple channels at the perceptual level is associated with the gamma oscillatory synchronization in sensory cortex (e.g. visual cortex, auditory cortex), whereas binding the information from single channel at the conscious level is associated with the enhanced Gamma oscillations in higher cortex (e.g. temporo-parietal cortex). The functions of Gamma oscillations in information-binding process have been described in several theoretical frameworks, including Neural Coupling model and Match & Utilization model. However, extreme caution should be exercised when Gamma oscillations were applied as an index of binding process. What roles of Gamma oscillations play in a complex binding process should be investigated in the future.

Key words:Gamma oscillations,binding,cross-modal information processing

ReleaseDate:2018-03-29 16:57:01

Bauer, M., Oostenveld, R., & Fries, P. (2009). Tactile stimulation accelerates behavioral responses to visual stimuli through enhancement of occipital gamma-band activity. Vision Research, 49(9), 931-942.

Bhattacharya, J., Shams, L., & Shimojo, S. (2002). Sound-induced illusory flash perception:Role of gamma band responses. Neuroreport, 13(14), 1727-1730.

Bosman, C. A., & Aboitiz, F. (2015). Functional constraints in the evolution of brain circuits. Frontiers in Neuroscience, 9, 303.

Bosman, C. A., Lansink, C. S., & Pennartz, C. M. A. (2014). Functions of gamma-band synchronization in cognition:from single circuits to functional diversity across cortical and subcortical systems. European Journal of Neuroscience, 39(11), 1982-1999.

Busch, N. A., Herrmann, C. S., Müeller, M. M., Lenz, D., & Gruber, T. (2006). A cross-laboratory study of event-related gamma activity in a standard object recognition paradigm. NeuroImage, 33(4), 1169-1177.

Castelhano, J., Duarte, I. C., Wibral, M., Rodriguez, E., & Castelo-Branco, M. (2014). The dual facet of gamma oscillations:Separate visual and decision making circuits as revealed by simultaneous EEG/fMRI. Human Brain Mapping, 35(10), 5219-5235.

Castelhano, J., Rebola, J., Leitão, B., Rodriguez, E., & Castelo-Branco, M. (2013). To perceive or not perceive:The role of gamma-band activity in signaling object percepts. PLoS One, 8(6), e66363.

Calvert, G. A., Campbell, R., & Brammer, M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 10(11), 649-57.

Chen, X. H., Pan, Z. H., Wang, P., Yang, X. H., Liu, P., You, X. Q., & Yuan, J. J. (2016). The integration of facial and vocal cues during emotional change perception:EEG markers. Social Cognitive and Affective Neuroscience, 11(7), 1152-1161.

Doesburg, S. M., Emberson, L. L., Rahi, A., Cameron, D., & Ward, L. M. (2008). Asynchrony from synchrony:Long-range gamma-band neural synchrony accompanies perception of audiovisual speech asynchrony. Experimental Brain Research, 185(1), 11-20.

Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron, 57(1), 11-23.

Eulitz, C., & Hannemann, R. (2010). On the matching of top-down knowledge with sensory input in the perception of ambiguous speech. BMC Neuroscience, 11, 67.

Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30(7), 309-316.

Friese, U., Daume, J., Göeschl, F., König, P., Wang, P., & Engel, A. K. (2016). Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control. Scientific Reports, 6, 32775.

Hagan, C. C., Woods, W., Johnson, S., Calder, A. J., Green, G. G. R., & Young, A. W. (2009). MEG demonstrates a supra-additive response to facial and vocal emotion in the right superior temporal sulcus. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20010-20015.

Hagan, C. C., Woods, W., Johnson, S., Green, G. G. R., & Young, A. W. (2013). Involvement of right STS in audio-visual integration for affective speech demonstrated using MEG. PLoS One, 8(8), e70648.

Herrmann, C. S., Früend, I., & Lenz, D. (2010). Human gamma-band activity:A review on cognitive and behavioral correlates and network models. Neuroscience & Biobehavioral Reviews, 34(7), 981-992.

Herrmann, C. S., & Mecklinger, A. (2000). Magnetoencephalographic responses to illusory figures:early evoked gamma is affected by processing of stimulus features. International Journal of Psychophysiology, 38(3), 265-281.

Herrmann, C. S., Munk, M. H. J., & Engel, A. K. (2004). Cognitive functions of gamma-band activity:Memory match and utilization. Trends in Cognitive Sciences, 8(8), 347-355.

Kaiser, J., Hertrich, I., Ackermann, H., & Lutzenberger, W. (2006). Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli. NeuroImage, 30(4), 1376-1382.

Kanayama, N., & Ohira, H. (2009). Multisensory processing and neural oscillatory responses:Separation of visuotactile congruency effect and corresponding electroencephalogram activities. Neuroreport, 20(3), 289-293.

Kanayama, N., Sato, A., & Ohira, H. (2007). Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology, 44(3), 392-402.

Kanayama, N., Tamè, L., Ohira, H., & Pavani, F. (2012). Top down influence on visuo-tactile interaction modulates neural oscillatory responses. NeuroImage, 59(4), 3406-3417.

Kay, L. M. (2015). Olfactory system oscillations across phyla. Current Opinion in Neurobiology, 31, 141-147.

Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a gestalt. The Journal of Neuroscience, 19(16), 7152-7161.

Klemen, J., & Chambers, C. D. (2012). Current perspectives and methods in studying neural mechanisms of multisensory interactions. Neuroscience & Biobehavioral Reviews, 36(1), 111-133.

Lange, J., Oostenveld, R., & Fries, P. (2011). Perception of the touch-induced visual double-flash illusion correlates with changes of rhythmic neuronal activity in human visual and somatosensory areas. NeuroImage, 54(2), 1395-1405.

Merker, B. (2013). Cortical gamma oscillations:The functional key is activation, not cognition. Neuroscience and Biobehavioral Reviews, 37(3), 401-417.

Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.-M., Kennedy, H., & Fries, P. (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 89(2), 384-397.

Mishra, J., Martinez, A., Sejnowski, T. J., & Hillyard, S. A. (2007). Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion. Journal of Neuroscience, 27(15), 4120-4131.

Moratti, S., Méndez-Bértolo, C., Del-Pozo, F., & Strange, B. A. (2014). Dynamic gamma frequency feedback coupling between higher and lower order visual cortices underlies perceptual completion in humans. NeuroImage, 86, 470-479.

Ott, C. G. M., Stier, C., Herrmann, C. S., & Jäncke, L. (2013). Musical expertise affects attention as reflected by auditory-evoked gamma-band activity in human EEG. Neuroreport, 24(9), 445-450.

Perry, G., Hamandi, K., Brindley, L. M., Muthukumaraswamy, S. D., & Singh, K. D. (2013). The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. NeuroImage, 68, 83-92.

Rossiter, H. E., Worthen, S. F., Witton, C., Hall, S. D., & Furlong, P. L. (2013). Gamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex. Frontiers in Human Neuroscience, 7, 362.

Schadow, J., Lenz, D., Dettler, N., Früend, I., & Herrmann, C. S. (2009). Early gamma-band responses reflect anticipatory top-down modulation in the auditory cortex. NeuroImage, 47(2), 651-658.

Schneider, N.-L., & Stengl, M. (2007). Extracellular long-term recordings of the isolated accessory medulla, the circadian pacemaker center of the cockroach Leucophaea maderae, reveal ultradian and hint circadian rhythms. Journal of Comparative Physiology A, 193(1), 35-42.

Senkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008). Crossmodal binding through neural coherence:Implications for multisensory processing. Trends in Neurosciences, 31(8), 401-409.

Supp, G. G., Schlögl, A., Trujillo-Barreto, N., Müeller, M. M., & Gruber, T. (2007). Directed cortical information flow during human object recognition:Analyzing induced EEG gamma-band responses in brain's source space. PLoS One, 2(8), e684.

Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. The Journal of Neuroscience, 16(13), 4240-4249.

Tang, X. Y., Wu, J. L., & Shen, Y. (2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience & Biobehavioral Reviews, 61, 208-224.

Tiesinga, P., & Sejnowski, T. J. (2009). Cortical enlightenment:Are attentional gamma oscillations driven by ING or PING? Neuron, 63(6), 727-732.

Ursino, M., Cuppini, C., & Magosso, E. (2014). Neurocomputational approaches to modelling multisensory integration in the brain:A review. Neural Networks, 60, 141-165.

Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316(5831), 1609-1612.

Wynn, J. K., Roach, B. J., Lee, J., Horan, W. P., Ford, J. M., Jimenez, A. M., & Green, M. F. (2015). EEG findings of reduced neural synchronization during visual integration in schizophrenia. PLoS One, 10(3), e0119849.

Yau, J. M., DeAngelis, G. C., & Angelaki, D. E. (2015). Dissecting neural circuits for multisensory integration and crossmodal processing. Philosophical Transactions of the Royal Society B:Biological Sciences, 370(1677), 20140203