DOI: 10.3724/SP.J.1042.2018.00625

Advances in Psychological Science (心理科学进展) 2018/26:4 PP.625-635

Attentional selection in the perceptual scenes and internal working memory representations: A unitized perspective

Attentional selection does not only exist in the visual processing, but also points to a number of short-stored memory representations. At the behavioral level, both types of attentional mechanisms exert a facilitatory effect on the task performance. Besides, this facilitatory effect is stable across different patterns of attentional distribution. At the neural level, on the one hand, due to the fact that the encoding and short-term storage of the visual information are mainly processed in the occipital region (V1~V4) topologically related to retina, these regions can thus serve as a valid platform for the operation of the two types of attentional selection; on the other hand, the controlling signal from dorsal fronto-parietal network could modulate the selective attention processing in the visual cortex in a top-down manner, which consequently facilitates the priority of the target processing. These new evidence indicating that both types of attentional selection may arise from a unified control mechanism. At the same time, the neural frameworks described in this article also provide a new perspective for re-understanding of the relationship between attention and visual working memory.

Key words:attentional selection,dorsal fronto-parietal network,visual cortex,internal attention,perceptual attention

ReleaseDate:2018-05-04 05:07:48

张明, 王爱君. (2012). 视觉搜索中基于工作记忆内容的注意捕获与抑制. 心理科学进展, 20(12), 1899-1907.

Alvarez, G. A., Gill, J., & Cavanagh, P. (2012). Anatomical constraints on attention:Hemifield independence is a signature of multifocal spatial selection. Journal of Vision, 12(5), 9.

Becke, A., Müller, N., Vellage, A., Schoenfeld, M. A., & Hopf, J. M. (2015). Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex. NeuroImage, 110, 78-86.

Belopolsky, A. V., & Theeuwes, J. (2011). Selection within visual memory representations activates the oculomotor system. Neuropsychologia, 49(6), 1605-1610.

Berggren, N., & Eimer, M. (2016). Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory? Journal of Cognitive Neuroscience, 28(12), 2003-2020.

Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 1-21.

Brefczynski, J. A., & DeYoe, E. A. (1999). A physical correlate of the ‘spotlight’ of visual attention. Nature Neuroscience, 2(4), 370-374.

Brigadoi, S., Cutini, S., Meconi, F., Castellaro, M., Sessa, P., Marangon, M.,... Dell' Acqua, R. (2017). On the role of the inferior intraparietal sulcus in visual working memory for lateralized single-feature objects. Journal of Cognitive Neuroscience, 29(2), 337-351.

Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9, 349-354.

Chen, K., Ye, Y., Xie, J., Xia, T., & Mo, L. (2017). Working memory operates over the same representations as attention. PLoS One, 12(6), e0179382.

Chen, Z. (2012). Object-based attention:A tutorial review. Attention, Perception, & Psychophysics, 74(5), 784-802.

Chun, M. M. (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia, 49(6), 1407-1409.

Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual review of Psychology, 62, 73-101.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222.

Drew, T. W., McCollough, A. W., & Vogel, E. K. (2006). Event-related potential measures of visual working memory. Clinical EEG and Neuroscience, 37(4), 286-291.

Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple moving objects. Journal of Neuroscience, 28(16), 4183-4191.

Duecker, F., & Sack, A. T. (2015). The hybrid model of attentional control:New insights into hemispheric asymmetries inferred from TMS research. Neuropsychologia, 74, 21-29.

Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820-829.

Eimer, M., & Grubert, A. (2014). Spatial attention can be allocated rapidly and in parallel to new visual objects. Current Biology, 24(2), 193-198.

Emrich, S. M., Johnson, J. S., Sutterer, D. W., & Postle, B. R. (2017). Comparing the effects of 10-hz repetitive TMS on tasks of visual STM and attention. Journal of Cognitive Neuroscience, 29(2), 286-297.

Emrich, S. M., Riggall, A. C., LaRocque, J. J., & Postle, B. R. (2013). Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. Journal of Neuroscience, 33(15), 6516-6523.

Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources:Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134-141.

Gandhi, S. P., Heeger, D. J., & Boynton, G. M. (1999). Spatial attention affects brain activity in human primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 3314-3319.

Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation:Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129-135.

Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147-153.

Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5), 350-363.

Greenberg, A. S., Verstynen, T., Chiu, Y. C., Yantis, S., Schneider, W., & Behrmann, M. (2012). Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. Journal of Neuroscience, 32(8), 2773-2782.

Gregoriou, G. G., Gotts, S. J., Zhou, H. H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207-1210.

Gressmann, M., & Janczyk, M. (2016). The (un) clear effects of invalid retro-cues. Frontiers in Psychology, 7, 244.

Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176-1194.

Heuer, A., & Schubö, A. (2016). Feature-based and spatial attentional selection in visual working memory. Memory & Cognition, 44(4), 621-632.

Jerde, T. A., Merriam, E. P., Riggall, A. C., Hedges, J. H., & Curtis, C. E. (2012). Prioritized maps of space in human frontoparietal cortex. Journal of Neuroscience, 32(48), 17382-17390.

Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention:Toward an integrative account of internal and external selection processes. Psychonomic Bulletin & Review, 20(2), 228-242.

Kiyonaga, A., & Egner, T. (2014). The working memory stroop effect. Psychological Science, 25(8), 1619-1629.

Kuo, B. C., Nobre, A. C., Scerif, G., & Astle, D. E. (2016). Top-down activation of spatiotopic sensory codes in perceptual and working memory search. Journal of Cognitive Neuroscience, 28(7), 996-1009.

Kuo, B. C., Rao, A. L., Lepsien, J., & Nobre, A. C. (2009). Searching for targets within the spatial layout of visual short-term memory. Journal of Neuroscience, 29(25), 8032-8038.

Kuo, B. C., Stokes, M. G., & Nobre, A. C. (2012). Attention modulates maintenance of representations in visual short term memory. Journal of Cognitive Neuroscience, 24(1), 51-60.

Kuo, B. C., Stokes, M. G., Murray, A. M., & Nobre, A. C. (2014). Attention biases visual activity in visual short-term memory. Journal of Cognitive Neuroscience, 26(7), 1377-1389.

Lara, A. H., & Wallis, J. D. (2014). Executive control processes underlying multi-item working memory. Nature Neuroscience, 17(6), 876-883.

Lara, A. H., & Wallis, J. D. (2015). The role of prefrontal cortex in working memory:A mini review. Frontiers in Systems Neuroscience, 9, 173.

LaRocque, J. J., Lewis-Peacock, J. A., & Postle, B. R. (2014). Multiple neural states of representation in short-term memory? It's a matter of attention. Frontiers in Human Neuroscience, 8, 5.

LaRocque, J. J., Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2013). Decoding attended information in short-term memory:An EEG study. Journal of Cognitive Neuroscience, 25(1), 127-142.

Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2012). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24(1), 61-79.

Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience & Biobehavioral Reviews, 62, 100-108.

Magen, H., Emmanouil, T. A., McMains, S. A., Kastner, S., & Treisman, A. (2009). Attentional demands predict short-term memory load response in posterior parietal cortex. Neuropsychologia, 47(8-9), 1790-1798.

Makovski, T., Shim, W. M., & Jiang, Y. V. (2006). Interference from filled delays on visual change detection. Journal of Vision, 6(12), 1459-1470.

Matsukura,M.,&Vecera, S. P. (2015). Selection of multiple cued items is possible during visual short-term memory maintenance. Attention, Perception, & Psychophysics, 77(5), 1625-1646.

Munneke, J., Belopolsky, A. V., & Theeuwes, J. (2012). Shifting attention within memory representations involves early visual areas. PLoS One, 7, e35528.

Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working Memory:Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449-461.

Nee, D. E., & D'Esposito, M. (2016). The representational basis of working memory. In Current Topics in Behavioral Neurosciences (pp. 1-18). Berlin, Heidelberg:Springer.

Nee, D. E., & Jonides, J. (2013). Trisecting representational states in short-term memory. Frontiers in Human Neuroscience, 7, 796.

Oberauer, K., & Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21(3), 164-169.

Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory:When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327-334.

Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7580-7585.

Panagopoulos, A. (2013). Hemifield asymmetries in the spatial distribution of selective attention (Unpublished doctoral dissertation). Concordia University.

Pasternak, T., Lui, L. L., & Spinelli, P. M. (2015). Unilateral prefrontal lesions impair memory-guided comparisons of contralateral visual motion. Journal of Neuroscience, 35(18), 7095-7105.

Peters, B., Kaiser, J., Rahm, B., & Bledowski, C. (2015). Activity in human visual and parietal cortex reveals object-based attention in working memory. Journal of Neuroscience, 35(8), 3360-3369.

Poole, V. N., Robinson, M. E., Singleton, O., DeGutis, J., Milberg, W. P., Mcglinchey, R. E., … Esterman, M. (2016). Intrinsic functional connectivity predicts individual differences in distractibility. Neuropsychologia, 86, 176-182.

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25.

Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26(3), 703-714.

Riggall, A. C., & Postle, B. R. (2012). The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. Journal of Neuroscience, 32(38), 12990-12998.

Robitaille, N., Marois, R., Todd, J., Grimault, S., Cheyne, D., & Jolicœur, P. (2010). Distinguishing between lateralized and nonlateralized brain activity associated with visual short-term memory:fMRI, MEG, and EEG evidence from the same observers. NeuroImage, 53(4), 1334-1345.

Roelfsema, P. R., & Houtkamp, R. (2011). Incremental grouping of image elements in vision. Attention, Perception, & Psychophysics, 73(8), 2542-2572.

Saenz, M., Buracas, G. T., & Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5(7), 631-632.

Sahan, M. I., Verguts, T., Boehler, C. N., Pourtois, G., & Fias, W. (2016). Paying attention to working memory:Similarities in the spatial distribution of attention in mental and physical space. Psychonomic Bulletin & Review, 23(4), 1190-1197.

Schneider, D., Mertes, C., & Wascher, E. (2015). On the fate of non-cued mental representations in visuo-spatial working memory:Evidence by a retro-cuing paradigm. Behavioural Brain Research, 293, 114-124.

Serences, J. T. (2016). Neural mechanisms of information storage in visual short-term memory. Vision research, 128, 53-67.

Serences, J. T., & Boynton, G. M. (2007). Feature-based attentional modulations in the absence of direct visual stimulation. Neuron, 55(2), 301-312.

Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2010). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207-214.

Shen, M., Xu, H. K., Zhang, H. H., Shui, R. D., Zhang, M., & Zhou, J. F. (2015). The working memory Ponzo illusion:Involuntary integration of visuospatial information stored in visual working memory. Journal of Vision, 141, 26-35.

Shomstein, S., & Behrmann, M. (2006). Cortical systems mediating visual attention to both objects and spatial locations. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11387-11392.

Silver, M. A., & Kastner, S. (2009). Topographic maps in human frontal and parietal cortex. Trends in Cognitive Sciences, 13(11), 488-495.

Somers, D. C., Dale, A. M., & Seiffert, A. E. (1999). Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1663-1668.

Sprague, T. C., Ester, E. F., & Serences, J. T. (2016). Restoring latent visual working memory representations in human cortex. Neuron, 91(3), 694-707.

Sreenivasan, K. K., Curtis, C. E., & D'Esposito, M. (2014). Revisiting the role of persistent neural activity during working memory. Trends in Cognitive Sciences, 18(2), 82-89.

Stokes, M. G., & Nobre, A. C. (2011). Top-down biases in visual short-term memory. In G. R. Mangun (Ed.) The neuroscience of attention:Attentional control and selection (pp. 209-228). Oxford:Oxford University Press.

Stokes, M. G. (2015). ‘Activity-silen’ working memory in prefrontal cortex:A dynamic coding framework. Trends in Cognitive Sciences, 19(7), 394-405.

Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78(2), 364-375.

Stoppel, C. M. Boehler, C. N., Strumpf, H., Krebs, R. M., Heinze, H. J., Hopf, J. M., & Schoenfeld, M. A. (2013). Distinct representations of attentional control during voluntary and stimulus-driven shifts across objects and locations. Cerebral Cortex, 23(6), 1351-1361.

Tamber-Rosenau, B., Esterman, M., Chiu, Y. C., & Yantis, S. (2011). Cortical mechanisms of cognitive control for shifting attention in vision and working memory. Journal of Cognitive Neuroscience, 23(10), 2905-2919.

Treue, S., & Martínez Trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575-579.

Tsubomi, H., Fukuda, K., Watanabe, K., & Vogel, E. K. (2013). Neural limits to representing objects still within view. Journal of Neuroscience, 33(19), 8257-8263.

van der Lubbe, R. H., Bundt, C., & Abrahamse, E. L. (2014). Internal and external spatial attention examined with lateralized EEG power spectra. Brain Research, 1583, 179-192.

van Dijk, H., van der Werf, J., Mazaheri, A., Medendorp, W. P., & Jensen, O. (2010). Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 900-905.

van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006). Eye movement trajectories and what they tell us. Neuroscience & Biobehavioral Reviews, 30(5), 666-679.

Vecera, S. P., & Farah, M. J. (1994). Does visual attention select objects or locations. Journal of Experimental Psychology:General, 123(2), 146-160.

Walter, S., Keitel, C., & Müller, M. M. (2016). Sustained splits of attention within versus across visual hemifields produce distinct spatial gain profiles. Journal of Cognitive Neuroscience, 28(1), 111-124.

Wannig, A., Stanisor, L., & Roelfsema, P. R. (2011). Automatic spread of attentional response modulation along gestalt criteria in primary visual cortex. Nature Neuroscience, 14(10), 1243-1244.

Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology Human Perception & Performance, 29(1), 121-138.

Woolgar, A., Hampshire, A., Thompson, R., & Duncan, J. (2011). Adaptive coding of task-relevant information in human frontoparietal cortex. Journal of Neuroscience, 31(41), 14592-14599.

Xu, Y. D., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91-95.

Ye, C. X., Hu, Z. H., Tapani, R., Maria, G., & Liu, Q. (2016). Retro-dimension-cue benefit in visual working memory. Scientific Reports, 6, 35573.

Zokaei, N., Manohar, S., Husain, M., & Feredoes, E. (2014). Causal evidence for a privileged working memory state in early visual cortex. Journal of Neuroscience, 34(1), 158-162.