DOI: 10.3724/SP.J.1042.2018.00636

Advances in Psychological Science (心理科学进展) 2018/26:4 PP.636-644

The system of visual imagery generation and its effect factors

Visual mental imagery is defined as the representation of visual information in human brain without external sensory stimuli, which plays an essential role in most of human's mental activities. In this paper, we reviewed a theoretical computational model of visual mental imagery and summarized the essential components of visual imagery generation system with its corresponding neural basis. This paper highlights that the great importance of primary visual cortex in visual imagery process as it works as a "visual buffer" for generating visual information mentally. Factors that affect the production of visual mental imagery were also outlined. By offering a comprehensive understanding model of the processing of visual mental imagery, this paper may facilitate the further researches on visual mental imagery.

Key words:visual imagery,generation system,visual buffer,computational theory,neural mechanisms

ReleaseDate:2018-05-04 05:07:48

Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & de Lange, F. P. (2013). Shared representations for working memory and mental imagery in early visual cortex. Current Biology, 23(15), 1427-1431.

Baddeley, A. D., & Andrade, J. (2000). Working memory and the vividness of imagery. Journal of Experimental Psychology:Genera, 129(1), 126-145.

Bartolomeo, P. (2002). The relationship between visual perception and visual mental imagery:A reappraisal of the neuropsychological evidence. Cortex, 38(3), 357-378.

Beech, J. R., & Allport, D. A. (1978). Visualization of compound scenes. Perception, 7(2), 129-138.

Behrmann, M., Moscovitch, M., & Winocur, G. (1994). Intact visual imagery and impaired visual perception in a patient with visual agnosia. Journal of Experimental Psychology:Human Perception and Performance, 20(5), 1068-1087.

Bergmann, J., Genç, E., Kohler, A., Singer, W., & Pearson, J. (2016). Neural anatomy of primary visual cortex limits visual working memory. Cerebral Cortex, 26(1), 43-50.

Blazhenkova, O. (2016). Vividness of object and spatial imagery. Perceptual and Motor Skills, 122(2), 490-508.

Bosch, S. E., Jehee, J. F. M., Fernández, G., & Doeller, C. F. (2014). Reinstatement of associative memories in early visual cortex is signaled by the hippocampus. Journal of Neuroscience, 34(22), 7493-7500.

Bridge, H., Harrold, S., Holmes, E. A., Stokes, M., & Kennard, C. (2012). Vivid visual mental imagery in the absence of the primary visual cortex. Journal of Neurology, 259(6), 1062-1070.

Canli, T., Desmond, J. E., Zhao, Z., & Gabrieli, J. D. E. (2002). Sex differences in the neural basis of emotional memories. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10789-10794.

Dijkstra, N., Bosch, S., & van Gerven, M. A. J. (2017). Vividness of visual imagery depends on the neural overlap with perception in visual areas. Journal of Neuroscience, 3022-3016, doi:10.1523/JNEUROSCI.3022-16.2016.

Dijkstra, N., Zeidman, P., Ondobaka, S., van Gerven, M. A. J., & Friston, K. (2017). Distinct top-down and bottom-up brain connectivity during visual perception and imagery. Scientific Reports, 7, 5677.

Farah, M. J., & Kosslyn, S. M. (1981). Structure and strategy in image generation. Cognitive Science, 5(4), 371-383.

Ferree, N. K., Kamat, R., & Cahill, L. (2011). Influences of menstrual cycle position and sex hormone levels on spontaneous intrusive recollections following emotional stimuli. Consciousness and Cognition, 20(4), 1154-1162.

Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception:An fMRI study. Cognitive Brain Research, 20(2), 226-241.

Gunter, R. W., & Bodner, G. E. (2008). How eye movements affect unpleasant memories:Support for a working-memory account. Behaviour Research and Therapy, 46(8), 913-931.

Hayes, J. R. (1973). On the function of visual imagery in elementary mathematics. In:W. G. Chase (Ed.), Visual Information Processing (pp. 177-214). Amsterdam:Elsevier.

Hirsch, C. R., & Mathews, A. (2012). A cognitive model of pathological worry. Behaviour Research and Therapy, 50(10), 636-646.

Hishitani, S., Miyazaki, T., & Motoyama, H. (2011). Some mechanisms responsible for the vividness of mental imagery:Suppressor, closer, and other functions. Journal of Mental Imagery, 35(1-2), 5-32.

Ishai, A., Ungerleider, L. G., & Haxby, J. V. (2000). Distributed neural systems for the generation of visual images. Neuron, 28(3), 979-990.

Ishai, A., Haxby, J. V., & Ungerleider, L. G. (2002). Visual imagery of famous faces:Effects of memory and attention revealed by fMRI. NeuroImage, 17(4), 1729-1741.

Kemps, E., & Newson, R. (2005). Patterns and predictors of adult age differences in mental imagery. Aging, Neuropsychology, and Cognition, 12(1), 99-128.

Kok, P., Failing, M. F., & de Lange, F. P. (2014). Prior expectations evoke stimulus templates in the primary visual cortex. Journal of Cognitive Neuroscience, 26(7), 1546-1554.

Kosslyn, S. M. (1980). Image and mind. Cambridge, MA, USA:Harvard University.

Kosslyn, S. M., Behrmann, M., & Jeannerod, M. (1995). The cognitive neuroscience of mental imagery. Neuropsychologia, 33(11), 1335-1344.

Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2(9), 635-642.

Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2006). Mental imagery and the human brain. In:Q. Jing, M. R. Rosenzweig, G. D'Ydewalle, H. Zhang, H.-C. Chen, & K. Zhang (Eds.). Progress in Psychological Science Around the World, vol 1:Neural, cognitive and developmental issues (pp. 195-209). New York:Psychology Press.

Kosslyn, S. M., & Thompson, W. L. (2003). When is early visual cortex activated during visual mental imagery? Psychological Bulletin, 129(5), 723-746.

Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers:A new characterization of visual cognitive style. Memory & Cognition, 33(4), 710-726.

Lee, S. H., Kravitz, D. J., & Baker, C. I. (2012). Disentangling visual imagery and perception of real-world objects. NeuroImage, 59(4), 4064-4073.

Mechelli, A., Price, C. J., Friston, K. J., & Ishai, A. (2004). Where bottom-up meets top-down:Neuronal interactions during perception and imagery. Cerebral Cortex, 14(11), 1256-1265.

Motoyama, H., & Hishitani, S. (2016). The brain mechanism that reduces the vividness of negative imagery. Consciousness and Cognition, 39, 59-69.

Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K., & Gallant, J. L. (2015). A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes. NeuroImage, 105, 215-228.

Paivio, A. (1975a). Imagery and synchronic thinking. Canadian Psychological Review/Psychologie Canadienne, 16(3), 147-163.

Paivio, A. (1975b). Perceptual comparisons through the mind's eye. Memory & Cognition, 3(6), 635-647.

Palermo, L., Piccardi, L., Nori, R., Giusberti, F., & Guariglia, C. (2016). The impact of ageing and gender on visual mental imagery processes:A study of performance on tasks from the Complete Visual Mental Imagery Battery (CVMIB). Journal of Clinical and Experimental Neuropsychology, 38(7), 752-763.

Pearson, D. G. (2007). Mental imagery and creative thought. Proceedings of the British Academy, 147, 187-212.

Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representation:Ending the imagery debate. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10089-10092.

Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery:Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19(10), 590-602.

Pylyshyn, Z. W. (2002). Mental imagery:In search of a theory. Behavioral and Brain Sciences, 25(2), 157-182.

Raz, N., Briggs, S. D., Marks, W., & Acker, J. D. (1999). Age-related deficits in generation and manipulation of mental images:Ⅱ. The role of dorsolateral prefrontal cortex. Psychology and Aging, 14(3), 436-444.

Roelfsema, P. R., & de Lange, F. P. (2016). Early visual cortex as a multiscale cognitive blackboard. Annual Review of Vision Science, 2, 131-151.

Schacter, D. L., Gaesser, B., & Addis, D. R. (2013). Remembering the past and imagining the future in the elderly. Gerontology, 59(2), 143-151.

Schwarzkopf, D. S., & Rees, G. (2013). Subjective size perception depends on central visual cortical magnification in human V1. PLoS One, 8(3), e60550.

Servos, P., & Goodale, M. A. (1995). Preserved visual imagery in visual form agnosia. Neuropsychologia, 33(11), 1383-1394.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703.

Solís-Ortiz, S., & Corsi-Cabrera, M. (2008). Sustained attention is favored by progesterone during early luteal phase and visuo-spatial memory by estrogens during ovulatory phase in young women. Psychoneuroendocrinology, 33(7), 989-998.

Tomasi, D., Ernst, T., Caparelli, E. C., & Chang, L. D. (2006). Common deactivation patterns during working memory and visual attention tasks:an intra-subject fMRI study at 4 Tesla. Human Brain Mapping, 27(8), 694-705.

Ungerleider, L. G. (1982). Two cortical visual systems. Analysis of Visual Behavior, 35(11), 549-586.

Verde, P., Piccardi, L., Bianchini, F., Trivelloni, P., Guariglia, C., & Tomao, E. (2013). Gender effects on mental rotation in pilots vs. nonpilots. Aviation, Space, and Environmental Medicine, 84(7), 726-729.

Wassell, J., Rogers, S. L., Felmingam, K. L., Bryant, R. A., & Pearson, J. (2015). Sex hormones predict the sensory strength and vividness of mental imagery. Biological Psychology, 107, 61-68.

Zeman, A. Z. J., Sala, S. D., Torrens, L. A., Gountouna, V. E., McGonigle, D. J., & Logie, R. H. (2010). Loss of imagery phenomenology with intact visuo-spatial task performance:A case of ‘blind imagination’. Neuropsychologia, 48(1), 145-155.

Zvyagintsev, M., Clemens, B., Chechko, N., Mathiak, K. A., Sack, A. T., & Mathiak, K. (2013). Brain networks underlying mental imagery of auditory and visual information. European Journal of Neuroscience, 37(9), 1421-1434.