Advances in Psychological Science (心理科学进展) 2018/26:5 PP.781-788

The analyses of multilevel moderation effects based on structural equation modeling

In recent years,multilevel models (MLM) have been frequently used for studying multilevel moderation in social sciences.However,there still exist sampling errors and measurement errors even after separating the between-group effects from the within-group effects of multilevel moderation.To solve this problem,a new method has been developed abroad by integrating MLM with structural equation models (SEM) under the framework of multilevel structural equation models (MSEM) to set latent variables and multiple indicators.It has been showed that the method could rectify sampling errors and measurement errors effectively and obtain more accurate estimation of moderating effects.After introducing the new method by modeling with random coefficient prediction and with latent moderated structural equations,we propose a procedure for analyzing multilevel moderation by using MSEM.An example is illustrated with the software Mplus.Totally 29 articles,published in Chinese psychological journals from 2010 to 2017,are reviewed for evaluating the situation of using multilevel moderation analysis methods in psychological researches in China.Directions for future study on multilevel moderation and MSEM were discussed at the end of the paper.

Key words:multilevel model,multilevel moderation,sampling error,random coefficient,Latent moderated structural equation

ReleaseDate:2018-07-02 16:10:46

陈卫旗. (2013). 组织创新文化、组织文化强度与个体员工创新行为:多层线性模型的分析. 心理科学, 36(5), 1187-1193.

段锦云, 施嘉逸, 凌斌. (2017). 高承诺组织与员工建言:双过程模型检验. 心理学报, 49(4), 539-553.

方杰, 邱皓政, 张敏强. (2011). 基于多层结构方程模型的情境效应分析:兼与多层线性模型比较. 心理科学进展, 19(2), 284-292.

方杰, 邱皓政, 张敏强, 方路. (2013). 我国近十年来心理学研究中HLM方法的应用述评. 心理科学, 36(5), 1194-1200.

方杰, 温忠麟, 张敏强, 任皓. (2014). 基于结构方程模型的多层中介效应分析. 心理科学进展, 22(3), 530-539.

方杰, 张敏强, 邱皓政. (2010). 基于阶层线性理论的多层级中介效应. 心理科学进展, 18(8), 1329-1338.

廖卉, 庄瑗嘉. (2012). 多层次理论模型的建立及研究方法. 见 陈晓萍, 徐淑英, 樊景立 (编), 组织与管理研究的实证方法 (第2版, pp. 553-587). 北京:北京大学出版社.

王昊, 周奕欣, 王可欣, 周明洁. (2015). 团队认同对教师人格与职业倦怠关系的跨层调节作用. 中国临床心理学杂志, 23(4), 741-745.

温忠麟. (2017). 实证研究中的因果推理与分析. 心理科学, 40(1), 200-208.

温忠麟, 刘红云, 侯杰泰. (2012). 调节效应和中介效应分析. 北京:教育科学出版社.

温忠麟, 吴艳, 侯杰泰. (2013). 潜变量交互效应结构方程:分布分析方法. 心理学探新, 33(5), 409-414.

杨付, 张丽华. (2012). 团队沟通、工作不安全氛围对创新行为的影响:创造力自我效能感的调节作用. 心理学报, 44(10), 1383-1401.

杨英, 龙立荣, 周丽芳. (2010). 授权风险考量与授权行为:领导-成员交换和集权度的作用. 心理学报, 42(8), 875-885.

Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling:A Multidisciplinary Journal, 22(3), 327-351.

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models:A new look at an old issue. Psychological Methods, 12(2), 121-138.

Hayes, A. F., & Montoya, A. K. (2017). A tutorial on testing, visualizing, and probing an interaction involving a multicategorical variable in linear regression analysis. Communication Methods and Measures, 11(1), 1-30.

Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(4), 457-474.

Li, X., & Beretvas, S. N. (2013). Sample size limits for estimating upper level mediation models using multilevel SEM. Structural Equation Modeling:A Multidisciplinary Journal, 20(2), 241-264.

Lüdtke, O., Marsh, H. W., Robitzsch, A., & Trautwein, U. (2011). A 2×2 taxonomy of multilevel latent contextual models:Accuracy-bias trade-offs in full and partial error correction models. Psychological Methods, 16(4), 444-467.

Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model:A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13(3), 203-229.

Maslowsky, J., Jager, J., & Hemken, D. (2015). Estimating and interpreting latent variable interactions:A tutorial for applying the latent moderated structural equation. International Journal of Behavioral Development, 39(1), 87-96.

Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437-448.

Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for assessing moderation within and across levels of analysis. Psychological Methods, 21(2), 189-205.

Ryu, E. (2015). The role of centering for interaction of level 1 variables in multilevel structural equation models. Structural Equation Modeling:A Multidisciplinary Journal, 22(4), 617-630.

Sardeshmukh, S. R., & Vandenberg, R. J. (2017). Integrating moderation and mediation:A structural equation modeling approach. Organizational Research Methods, 20(4), 721-745.

Zitzmann, S., Lüdtke, O., Robitzsch, A., & Marsh, H. W. (2016). A Bayesian approach for estimating multilevel latent contextual models. Structural Equation Modeling:A Multidisciplinary Journal, 23(5), 661-679.