doi:

DOI: 10.3724/SP.J.1042.2018.01165

Advances in Psychological Science (心理科学进展) 2018/26:7 PP.1165-1173

Modern dance training and string instrument training have different effects on grey matter architecture


Abstract:
The discrepant effects of dance and music training on gray matter volume are still unknown. In this study, We used voxel-based morphometry (VBM) method to analyze the structural magnetic resonance imaging (sMRI) data of modern dancers, string instrument players and controls subjects. Our results showed increased gray matter volume (GMV) among cortical, subcortical and the cerebellum areas within the modern dancers and localized cortical regions in the string instrument players respectively. Moreover, among the three groups only modern dancers showed decreased GMV between cortical and subcortical regions. The results suggested a systematical and widespread effects of modern dance training as well as an effector-specific training outcome in the auditory-motor-semantic cortex of the string instrument players.

Key words:modern dance training,string instrument training,voxel-based morphometry (VBM)

ReleaseDate:2018-08-06 13:54:49



段旭君. (2013). 基于大尺度脑网络分析方法的脑可塑性研究(博士学位论文). 电子科技大学, 成都.

蒋存梅. (2016). 音乐心理学. 上海:华东师范大学出版社.

马清. (2000). 音乐理论与管弦乐基础. 北京:北京大学出版社.

平心. (2004). 舞蹈心理学. 北京:高等教育出版社.

吕艺生. (2003). 舞蹈学导论. 上海:上海音乐出版社.

覃嫔. (2018). 舞蹈艺术的训练研究. 北京:北京理工大学出版社.

周临舒, 赵怀阳, 蒋存梅. (2017). 音乐表演训练对神经可塑性的影响:元分析研究. 心理科学进展, 25(11), 1877-1887.

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry——the methods. NeuroImage, 11, 805-821.

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839-851.

Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H.,... Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists:Evidence from fMRI conjunction. NeuroImage, 30(3), 917-926.

Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24(6), 1832-1834.

Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65-78.

Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19(7), 1583-1596.

Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241-254.

Brown, S., Martinez, M. J., & Parsons, L. M. (2006). The neural basis of human dance. Cerebral Cortex, 16(8), 1157-1167.

Burzynska, A. Z., Finc, K., Taylor, B. K., Knecht, A. M., & Kramer, A. F. (2017). The dancing brain:Structural and functional signatures of expert dance training. Frontiers in Human Neuroscience, 11, 566.

Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills:An FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243-1249.

Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo:Observation of dance by dancers. NeuroImage, 31(3), 1257-1267.

Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity:Changes in grey matter induced by training. Nature, 427(6972), 311-312.

Giacosa, C., Karpati, F. J., Foster, N. E. V., Penhune, V. B., & Hyde, K. L. (2016). Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. NeuroImage, 135, 273-286.

Groussard, M., Rauchs, G., Landeau, B., Viader, F., Desgranges, B., Eustache, F., & Platel, H. (2010). The neural substrates of musical memory revealed by fMRI and two semantic tasks. NeuroImage, 53(4), 1301-1309.

Groussard, M., Viader, F., Landeau, B., Desgranges, B., Eustache, F., & Platel, H. (2014). The effects of musical practice on structural plasticity:The dynamics of grey matter changes. Brain and Cognition, 90, 174-180.

Han, Y., Yang, H., Lv, Y. T., Zhu, C. Z., He, Y., Tang, H. H.,... Dong, Q. (2009). Gray matter density and white matter integrity in pianists' brain:A combined structural and diffusion tensor MRI study. Neuroscience Letters, 459(1), 3-6.

Hänggi, J., Koeneke, S., Bezzola, L., & Jäncke, L. (2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31(8), 1196-1206.

Huang, H. Y., Wang, J. J., Seger, C., Min, L., Feng, D., Wu, X. Y.,... Huang, R. W. (2017). Long-term intensive gymnastic training induced changes in intra-and inter-network functional connectivity:An independent component analysis. Brain Structure and Function, 223(1), 131-144.

Huang, R. W., Lu, M., Song, Z., & Wang, J. (2015). Long-term intensive training induced brain structural changes in world class gymnasts. Brain Structure and Function, 220(2), 625-644.

Hutchinson, S., Lee, L. H. L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13(9), 943-949.

Hyde, K. L., Peretz, I., & Zatorre, R. J. (2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46(2), 632-639.

Jola, C., McAleer, P., Grosbras, M. H., Love, S. A., Morison, G., & Pollick, F. E. (2013). Uni-and multisensory brain areas are synchronised across spectators when watching unedited dance recordings. i-Perception, 4(4), 265-284.

Jones, J., Adlam, A., Benattayallah, A., & Milton, F. (2017, July). Working memory training increases recruitment of the middle frontal gyrus in children. Poster session presented at the Conference of Experimental Psychology Society, Reading, UK.

Karpati, F. J., Giacosa, C., Foster, N. E. V., Penhune, V. B., & Hyde, K. L. (2017). Dance and music share gray matter structural correlates. Brain Research, 1657, 62-73.

Kheradmand, A., & Zee, D. S. (2011). Cerebellum and ocular motor control. Frontiers in Neurology, 2, 53.

Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9(12), 578-584.

Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound:Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308-314.

Laufer, I., Negishi, M., Lacadie, C. M., Papademetris, X., & Constable, R. T. (2011). Dissociation between the activity of the right middle frontal gyrus and the middle temporal gyrus in processing semantic priming. PLoS One, 6(8), e22368.

Li, G. J., He, H., Huang, M. T., Zhang, X. X., Lu, J., Lai, Y. X.,... Yao, D. Z. (2015). Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training. Scientific Reports, 5, 10271.

Li, S. Y., Han, Y., Wang, D. Y., Yang, H., Fan, Y. B., Lv, Y. T.,... He, Y. (2010). Mapping surface variability of the central sulcus in musicians. Cerebral Cortex, 20(1), 25-33.

Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., & Frith, C. D. (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4398-4403.

Mutschler, I., Schulze-Bonhage, A., Glauche, V., Demandt, E., Speck, O., & Ball, T. (2007). A rapid sound-action association effect in human insular cortex. PLoS One, 2(2), e259.

Nichols, T. E. (2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 62(2), 811-815.

Oldfield, R. C. (1971). The assessment and analysis of handedness:The Edinburgh inventory. Neuropsychologia, 9(1), 97-113.

Ono, Y., Nomoto, Y., Tanaka, S., Sato, K., Shimada, S., Tachibana, A.,... Noah, J. A. (2014). Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay:Temporal characteristics of top-down and bottom-up cortical activities. NeuroImage, 85, 461-470.

Öztürk, A. H., Tasçioglu, B., Aktekin, M., Kurtoglu, Z., & Erden, I. (2002). Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29(1), 29-34.

Rüber, T., Lindenberg, R., & Schlaug, G. (2015). Differential adaptation of descending motor tracts in musicians. Cerebral Cortex, 25(6), 1490-1498.

Schlaug, G., Jancke, L., Huang, Y., & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267(5198), 699-701.

Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688-694.

Shibasaki, H., Sadato, N., Lyshkow, H., Yonekura, Y., Honda, M., Nagamine, T.,... Konishi, J. (1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116, 1387-1398.

Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage, 17(3), 1613-1622.

Taubert, M., Draganski, B., Anwander, A., Muller, K., Horstmann, A., Villringer, A., & Ragert, P. (2010). Dynamic properties of human brain structure:Learning-related changes in cortical areas and associated fiber connections. Journal of Neuroscience, 30(35), 11670-11677.

Turner, R. S., Grafton, S. T., Votaw, J. R., Delong, M. R., & Hoffman, J. M. (1998). Motor subcircuits mediating the control of movement velocity:A PET study. Journal of Neurophysiology, 80(4), 2162-2176.