DOI: 10.3724/SP.J.1042.2018.01174

Advances in Psychological Science (心理科学进展) 2018/26:7 PP.1174-1185

Characteristics and neural mechanisms of handwritten character recognition

There is a great difference between the recognition process of handwritten words and printed words. Compared with the printed words, the recognition of handwritten characters is more influenced by text material. The factors related to the text material include physical structural characteristics of the text, the character characteristics, and the writing style. Research on the neural mechanisms found that the brain regions under recognizing handwritten character is different from those under recognizing printed words. The activation brain area of recognizing handwritten words include the occipital lobe and lateral frontal and parietal lobes, which is the same as those of recognizing the printed words; and also include the left posterior motor cortex, the lateral prefrontal cortex and the posterior parietal cortex, which is different from those of recognizing the printed words. Handwritten word processing involves both holistic processing and feature processing. The future research should further explore around two aspects. The first is how the brain extracts the target words from the noisy visual information when we recognize the handwritten words. The second is to consider building a theoretical model of handwritten character recognition to explain the recognition process of the handwritten characters more efficiently.

Key words:handwritten words,character recognition,printed words,neural mechanisms

ReleaseDate:2018-08-06 13:54:49

陈琳, 钟罗金, 冷英, 莫雷. (2014). 拼音自动加工和语义加工中汉字字形的激活. 心理学报, 46(11), 1661-1670.

常玉林, 王丹烁, 周蔚. (2016). 字形判断过程中的整体与局部优先效应:来自反应时和眼动指标的证据. 心理科学, 39(5), 1040-1044.

管益杰, 李燕芳, 宋艳. (2006). 汉字字形加工的关键特征模型. 山东师范大学学报(人文社会科学版), 51(2), 126-129.

宫殿坤, 郝春东, 王殿春. (2009). 字体特征与搜索方式对视觉搜索反应时的影响. 心理科学, 32(5), 1142-1145.

胡学平, 孙继民, 曹蕊, 姚温青, 王美珠. (2014). 实物形状的知觉相似性对视觉隐喻加工的影响. 心理学报, 46(5), 607-620.

胡笑羽, 刘海健, 刘丽萍, 臧传丽, 白学军. (2007). E-Z阅读者模型的新进展. 心理学探新, 27(1), 24-29, 40.

黄志平. (2012). 字迹风格对字迹识别影响的眼动研究(硕士学位论文). 西安:第四军医大学.

金连文, 钟卓耀, 杨钊, 杨维信, 谢泽澄, 孙俊. (2016). 深度学习在手写汉字识别中的应用综述. 自动化学报, 42(8), 1125-1141.

柯学, 白学军, 隋南. (2004). 视知觉无意识加工中的形状优势效应. 心理科学, 27(2), 321-324.

柯学, 白学军, 隋南. (2008). 视知觉无意识对局部形状和颜色特征加工的注意调节. 心理科学, 31(2), 336-339.

李宁, 梁宁建. (2014). 多层次格式塔双向加工模型:汉字输入中形码的认知加工机制. 心理与行为研究, 12(4), 441-446.

李辉, 王晶颖. (2016). 汉字加工神经机制的特异性与一般性问题. 当代语言学, 18(4), 568-580.

沈模卫, 朱祖祥. (1995). 整体汉字字形识别过程探索. 应用心理学, (2), 43-48.

隋雪, 沈彤, 吴琼, 李莹. (2013). 阅读眼动控制模型的中文研究——串行和并行. 辽宁师范大学学报(社会科学版), (5), 672-679.

印丛, 王娟, 张积家. (2011). 汉语言语产生中语音、字形启动的位置效应. 心理学报, 43(9), 1002-1012.

王成, 尤文平, 张清芳. (2012). 书写产生过程的认知机制. 心理科学进展, 20(10), 1560-1572.

王磊, 杨丽川, 孟千力, 马原野. (2018). 上丘-丘脑枕结节-杏仁核视觉皮层下通路及其生物学意义. 生理学报, 70(1), 79-84.

王静, 薛成波, 刘强. (2018). 客体同维度特征的视觉工作记忆存储机制. 心理学报, 50(2), 176-185.

严建雯, 孙善麟. (2005). 汉字识别的加工模型. 宁波大学学报(理工版), 18(3), 329-332.

周群, 尧德中, 尹愚, 饶恒毅, 卓彦, 陈霖. (2005). 图形形状与空间位置知觉诱发脑电的相干性分析. 生物物理学报, 21(5), 391-395.

周爱保, 张学民, 舒华, 何立国. (2005). 字体、字号和词性对汉字认知加工的影响. 应用心理学, 11(2), 128-132.

曾捷英, 周新林, 喻柏林. (2001). 变形汉字的结构方式和笔画数效应. 心理学报, 33(3), 204-208.

臧克和. (2006). 结构的整体性——汉字与视知觉. 语言文字应用, (3), 42-48.

Barnhart, A. S., & Goldinger, S. D. (2010). Interpreting chicken-scratch:Lexical access for handwritten words. Journal of Experimental Psychology:Human Perception and Performance, 36(4), 906-923.

Barnhart, A. S., & Goldinger, S. D. (2013). Rotation reveals the importance of configural cues in handwritten word perception. Psychonomic Bulletin & Review, 20(6), 1319-1326.

Barnhart, A. S., & Goldinger, S. D. (2015). Orthographic and phonological neighborhood effects in handwritten word perception. Psychonomic Bulletin & Review, 22(6), 1739-1745.

Balota, D. A., Aschenbrenner, A. J., & Yap, M. J. (2013). Additive effects of word frequency and stimulus quality:the influence of trial history and data transformations. Journal of Experimental Psychology:Learning Memory & Cognition, 39(5), 1563-1571.

Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). Cross-cultural effect on the brain revisited:universal structures plus writing system variation. Human Brain Mapping, 25(1), 92-104.

Bub, D. N., Arguin, M., & Lecours, A. R. (1993). Jules Dejerine and his interpretation of pure alexia. Brain and Language, 45(4), 531-559.

Cabeza, R., & Nyberg, L. (2000). Imaging cognition Ⅱ:An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47.

Cao, F., Vu, M., Chan, D. H., Lawrence, J. M., Harris, L. N., Guan, Q., … Perfetti, C. A. (2013). Writing affects the brain network of reading in Chinese:A functional magnetic resonance imaging study. Human Brain Mapping, 34(7), 1670-1684.

Chen, J. Y., & Cherng, R. C. (2013). The proximate unit in Chinese handwritten character production. Frontiers in Psychology, 4, 517.

Corcoran, D. W. J., & Rouse, R. O. (1970). An aspect of perceptual organization involved in reading typed and handwritten words. Quarterly Journal of Experimental Psychology, 22(3), 526-530.

Coltheart, M., Curtis, B., Atkins, P., & Haller, M. (1993). Models of reading aloud:Dual-route and parallel-distributed-processing approaches. Psychological Review, 100(4), 589-608.

De Zuniga, C. M., Humphreys, G. W., & Evett, L. J. (1991). Additive and interactive effects of repetition, degradation, and word frequency in the reading of handwriting. In Besner, D. & Humphreys, G. (Eds.), Basic processes in reading (pp. 10-33). Hillsdale, NJ:Erlbaum.

Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words:A proposal. Trends in Cognitive Sciences, 9(7), 335-341.

Diaz-Cabrera, M., Ferrer, M. A., & Morales, A. (2015). Modeling the lexical morphology of western handwritten signatures. PLoS One, 10(4), e0123254.

Dinges, L., Al-Hamadi, A., Elzobi, M., El-etriby, S., & Ghoneim, A. (2015). ASM based synthesis of handwritten Arabic text pages. The Scientific World Journal, 2015, 323575.

Dinges, L., Al-Hamadi, A., Elzobi, M., & El-etriby, S. (2016). Synthesis of common Arabic handwritings to aid optical character recognition research. Sensors, 16(3), 346.

Gordon, C. J., Spivev, M. J., & Balasubramaniam, R. (2017). Corticospinal excitability during the processing of handwritten and typed words and non-words. Neuroscience Letters, 651, 232-236.

Engbert, R., Longtin, A., & Kliegl, R. (2002). A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vision Research, 42(5), 621-636.

Guan, C. Q., Liu, Y., Chan, D. H. L., Ye, F., & Perfetti, C. A. (2011). Writing strengthens orthography and alphabetic-coding strengthens phonology in learning to read Chinese. Journal of Educational Psychology, 103(3), 509-522.

Hellige, J. B., & Adamson, M. M. (2007). Hemispheric differences in processing handwritten cursive. Brain and Language, 102(3), 215-227.

Li, J. X., & James, K. H. (2016). Handwriting generates variable visual output to facilitate symbol learning. Journal of Experimental Psychology General, 145(3), 298-313.

Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L. (2003). Visual presentation of single letters activates a premotor area involved in writing. NeuroImage, 19(4), 1492-1500.

Magrassi, L., Bongetta, D., Bianchini, S., Berardesca, M., & Arienta, C. (2010). Central and peripheral components of writing critically depend on a defined area of the dominant superior parietal gyrus. Brain Research, 1346, 145-154.

Mukhopadhyay, M., Singh, P. K., Sarkar, R., & Nasipuri, M. (2018). A study of different classifier combination approaches for handwritten Indic Script Recognition. Journal of Imaging, 4(2), 39.

Nakamura, K., Kuo, W. J., Pegado, F., Cohen, L., Tzeng, O. J. L., & Dehaene, S. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20762-20767.

Perea, M., Gil-López, C., Beléndez, V., & Carreiras, M. (2016). Do handwritten words magnify lexical effects in visual word recognition? The Quarterly Journal of Experimental Psychology, 69(8), 1631-1647.

Perea, M., Marcet, A., Uixera, B., & Vergara-Martínez, M. (2016). Eye movements when reading sentences with handwritten words. The Quarterly Journal of Experimental Psychology, doi:10.1080/17470218.2016.1237531.

Perfetti, C. A., & Tan, L. (2013). Write to read:the brain's universal reading and writing network. Trends in Cognitive Sciences, 17(2), 56-57.

Planton, S., Jucla, M., Roux, F. E., & Demonet, J. F. (2013). The "handwriting brain":A meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex, 49(10), 2772-2787.

Qiao, E., Vinckier, F., Szwed, M., Naccache, L., Valabrègue, R., Dehaene, S., & Cohen, L. (2010). Unconsciously deciphering handwriting:Subliminal invariance for handwritten words in the visual word form area. NeuroImage, 49(2), 1786-1799.

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125-157.

Reichle, E. D., Pollatsek, A., Rayner, K. (2006). E-Z Reader:A cognitive-control, serial-attention model of eye-movement behavior during reading. Cognitive Systems Research, 7(1), 4-22.

Reichle, E. D., Warren, T., & McConnell, K. (2009). Using E-Z reader to model the effects of higher level language processing on eye movements during reading. Psychonomic Bulletin & Review, 16(1), 1-21.

Rayner, K., Reichle, E. D., Stroud, M. J., Williams, C. C., & Pollatsek, A. (2006). The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. Psychology and Aging, 21(3), 448-465.

Rosso, O. A., Ospina, R., & Frery, A. C. (2016). Classification and verification of handwritten signatures with time causal information theory quantifiers. PLoS One, 11(12), e0166868.

Tan, L. H., Spinks, J. A., Eden, G. F., Perfetti, C. A., & Siok, W. T. (2005). Reading depends on writing, in Chinese. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8781-8785.

Tan, L. H., Xu, M., Chang, C. Q., & Siok, W. T. (2013). China's language input system in the digital age affects children's reading development. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 1119-1123.

Vajda, S., Ranqoni, Y., & Cecotti, H. (2015). Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling:Application to handwritten character recognition. Pattern Recognition Letters, 58, 23-28.

Wandell, B. A., Rauschecker, A. M., & Yeatman, J. D. (2012). Learning to see words. Annual Review of Psychology, 63(1), 31-53.

Xu, Y., Pollatsek, A., & Potter, M. C. (1999). The activation of Phonology during silent Chinese word reading. Journal of Experimental Psychology:Learning, Memory, and Cognition, 25(4), 835-858.

Zhang, Q., & Feng, C. (2017). The interaction between central and peripheral processing in Chinese handwritten production:Evidence from the effect of lexicality and radical complexity. Frontiers in Psychology, 8, 334.