doi:

DOI: 10.3724/SP.J.1042.2018.01417

Advances in Psychological Science (心理科学进展) 2018/26:8 PP.1417-1428

Neural mechanisms underlying dynamic changes of active maternal behavior in rodents


Abstract:
Active maternal behavior refers to a set of motivated behaviors that promote female mammals to effectively care for the pups during their lactation, so it has a vital important role for the survival and behavioral development in pups. Evidence has shown that the active maternal behavior in rodents could dynamically change from the onset and maintenance in early postpartum to the decline in late postpartum, which reflects female rodents' adaptation to the stage changes of incentive values in pups. This process not only involves in the pathway of medial preoptic area (MPOA)-ventral tegmental area (VTA)-nucleus accumbens (NA)-ventral pallidum (VP) opened by hormone profile at parturition, but also requires the basolateral amygdala (BLA), medial prefrontal cortex (MPFC), and other areas to real-timely regulate this pathway. Studies on the dynamic changes about active maternal behavior and its neural mechanisms in lactating rodents could deepen our knowledge about the evolution and early development of behaviors, and also be helpful for the clinical intervention to postpartum depression in humans. This review illustrates the relationship between incentive values in pups and dynamic changes in active maternal behavior with evidence used by conditioned place preference (CPP), then systematically elaborates the neural mechanisms underlying dynamic changes of active maternal behavior, and finally discusses several major issues or future research directions.

Key words:active maternal behavior,dynamic changes,incentive values,neural mechanisms

ReleaseDate:2018-08-27 09:44:17



陈磊磊, 聂莉娜, 李钰, 程鹏, 李鸣, 高军. (2017). 五羟色胺系统对母性行为的调控及其机制. 心理科学进展, 25(12), 2089-2098.

刘飞, 蔡厚德. (2010). 情绪生理机制研究的外周与中枢神经系统整合模型. 心理科学进展, 18(4), 616-622.

Afonso, V. M, King, S., Chatterjee, D., & Fleming, A. S. (2009). Hormones that increase maternal responsiveness affect accumbal dopaminergic responses to pup-and food-stimuli in the female rat. Hormones and Behavior, 56(1), 11-23.

Afonso, V. M., Shams, W. M., Jin, D., & Fleming, A. S. (2013). Distal pup cues evoke dopamine responses in hormonally primed rats in the absence of pup experience or ongoing maternal behavior. Journal of Neuroscience, 33(6), 2305-2312.

Afonso, V. M., Sison, M., Lovic, V., & Fleming, A. S. (2007). Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization. Behavioral Neuroscience, 121(3), 515-526.

Atzil, S., Hendler, T., & Feldman, R. (2011). Specifying the neurobiological basis of human attachment:Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36(13), 2603-2615.

Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action:Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4-5), 407-419.

Banerjee, S. B., & Liu, R. C. (2013). Storing maternal memories:Hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Frontiers in Neuroendocrinology, 34(4), 300-314.

Benedetto, L., Pereira, M., Ferreira, A., & Torterolo, P. (2014). Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides, 58, 20-25.

Cortés-Mendoza, J., Díaz de León-Guerrero, S., Pedraza-Alva, G., & Pérez-Martínez, L. (2013). Shaping synaptic plasticity:The role of activity-mediated epigenetic regulation on gene transcription. International Journal of Developmental Neuroscience, 31(6), 359-369.

Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents:Neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews, 28, 771-784.

D'Cunha, T. M., King, S. J., Fleming, A. S., & Lévy, F. (2011). Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats. Hormones & Behavior, 59(1), 14-21.

Dilgen, J., Tejeda, H. A., & O'Donnell, P. (2013). Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. Journal of Neurophysiology, 110(1), 221-229.

Dobolyi, A., Grattan, D. R., & Stolzenberg, D. S. (2014). Preoptic inputs and mechanisms that regulate maternal responsiveness. Journal of Neuroendocrinology, 26(10), 627-640.

Febo, M., Numan, M., & Ferris, C. F. (2005). Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. Journal of Neuroscience, 25(50), 11637-11644.

Fleming, A. S., Ruble, D., Krieger, H., & Wong, P. Y. (1997). Hormonal and experiential correlates of maternal responsiveness during pregnancy and the puerperium in human mothers. Hormones & Behavior, 31(2), 145-158.

Gagnidze, K., Weil, Z. M., Faustino, L. C., Schaafsma, S. M., & Pfaff, D. W. (2013). Early histone modifications in the ventromedial hypothalamus and preoptic area following oestradiol administration. Journal of Neuroendocrinology, 25(10), 939-955.

Jin, S. H., Blendy, J. A., & Thomas, S. A. (2005). Cyclic AMP response element-binding protein is required for normal maternal nurturing behavior. Neuroscience, 133(3), 647-655.

Kesner, R. P. (2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology, 28(2), 219-228.

Killcross, S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13(4), 400-408.

Kim, P., Strathearn, L., & Swain, J. E. (2016). The maternal brain and its plasticity in humans. Hormones & Behavior, 77, 113-123.

Kuroda, K. O., Meaney, M. J., Uetani, N., Fortin, Y., Ponton, A., & Kato, T. (2007). ERK-fosB signaling in dorsal MPOA neurons plays a major role in the initiation of parental behavior in mice. Molecular and Cellular Neuroscience, 36(2), 121-131.

Laurent, H. K., & Ablow, J. C. (2012). A cry in the dark:Depressed mothers show reduced neural activation to their own infant's cry. Social Cognitive & Affective Neuroscience, 7(2), 125-134.

Lee, A., Clancy, S., & Fleming, A. S. (1999). Mother rats bar-press for pups:Effects of lesions of the MPOA and limbic sites on maternal behavior and operant responding for pup-reinforcement. Behavioural Brain Research, 100(1-2), 15-31.

Li, M., & Fleming, A. S. (2003). The nucleus accumbens shell is critical for normal expression of pup-retrieval in postpartum female rats. Behavioural Brain Research, 145(1-2), 99-111.

Lonstein, J. S., Lévy, F., & Fleming, A. S. (2015). Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Hormones and Behavior, 73, 156-185.

Marlin, B. J., Mitre, M., D'Amour, J. A., Chao, M. V., & Froemke, R. C. (2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520(7548), 499-504.

Mattson, B. J., & Morrell, J. I. (2005). Preference for cocaine-versus pup-associated cues differentially activates neurons expressing either Fos or cocaine-and amphetamine-regulated transcript in lactating, maternal rodents. Neuroscience, 135(2), 315-328.

Mattson, B. J., Williams, S., Rosenblatt, J. S., & Morrell, J. I. (2001). Comparison of two positive reinforcing stimuli:Pups and cocaine throughout the postpartum period. Behavioral Neuroscience, 115(3), 683-694.

Moltz, H., & Wiener, E. (1966). Effects of ovariectomy on maternal behavior of primiparous and multiparous rats. Journal of Comparative & Physiological Psychology, 62(3), 382-387.

Nicola, S. M. (2007). The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology, 191(3), 521-550.

Numan, M. (2006). Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behavioral and Cognitive Neuroscience Reviews, 5(4), 163-190.

Numan, M., Bress, J. A., Ranker, L. R., Gary, A. J., Denicola, A. L., Bettis, J. K., & Knapp, S. E. (2010). The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behavioural Brain Research, 214(2), 368-376.

Numan, M., Rosenblatt, J. S., & Komisaruk, B. R. (1977). Medial preoptic area and onset of maternal behavior in the rat. Journal of Comparative & Physiological Psychology, 91(1), 146-164.

Numan, M., & Stolzenberg, D. S. (2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Frontiers in Neuroendocrinology, 30(1), 46-64.

Numan, M., & Young, L. J. (2016). Neural mechanisms of mother-infant bonding and pair bonding:Similarities, differences, and broader implications. Hormones and Behavior, 77, 98-112.

Olazábal, D., Pereira, M., Agrati, D., Ferreira, A., Fleming, A. S., González-Mariscal, G.,... Uriarte, N. (2013a). New theoretical and experimental approaches on maternal motivation in mammals. Neuroscience and Biobehavioral Reviews, 37, 1860-1874.

Olazábal, D., Pereira, M., Agrati, D., Ferreira, A., Fleming, A. S., González-Mariscal, G.,... Uriarte, N. (2013b). Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neuroscience and Biobehavioral Reviews, 37, 1875-1892.

Parada, M., King, S., Li, M., & Fleming, A. S. (2008). The roles of accumbal dopamine D1 and D2 receptors in maternal memory in rats. Behavioral Neuroscience, 122(2), 368-376.

Peña, C. J., & Champagne, F. A. (2015). Neonatal overexpression of estrogen receptor-α alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring. Developmental Neurobiology, 75(10), 1114-1124.

Pereira, M. (2016). Structural and functional plasticity in the maternal brain circuitry. In H. J. V. Rutherford & L. C. Mayes (Eds.), Maternal brain plasticity:Preclinical and human research and implications for intervention. New Directions for Child and Adolescent Development (no. 153, pp. 23-46). Wiley Periodicals, Inc..

Pereira, M., & Ferreira, A. (2016). Neuroanatomical and neurochemical basis of parenting:Dynamic coordination of motivational, affective and cognitive processes. Hormones and Behavior, 77, 72-85.

Pereira, M., & Morrell, J. I. (2009). The changing role of the medial preoptic area in the regulation of maternal behavior across the postpartum period:Facilitation followed by inhibition. Behavioural Brain Research, 205(1), 238-248.

Pereira, M., & Morrell, J. I. (2010). The medial preoptic area is necessary for motivated choice of pup-over cocaine-associated environments by early postpartum rats. Neuroscience, 167(2), 216-231.

Pereira, M., & Morrell, J. I. (2011). Functional mapping of the neural circuitry of rat maternal motivation:Effects of site-specific transient neural inactivation. Journal of Neuroendocrinology, 23(11), 1020-1035.

Reisbick, S., Rosenblatt, J. S., & Mayer, A. D. (1975). Decline of maternal behavior in the virgin and lactating rat. Journal of Comparative & Physiological Psychology, 89(7), 722-732.

Riccio, A. (2010). Dynamic epigenetic regulation in neurons:Enzymes, stimuli and signaling pathways. Nature Neuroscience, 13(11), 1330-1337.

Romero-Fernandez, W., Borroto-Escuela, D. O., Agnati, L. F., & Fuxe, K. (2013). Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Molecular Psychiatry, 18(8), 849-850.

Root, D. H., Melendez, R. I., Zaborszky, L., & Napier, T. C. (2015). The ventral pallidum:Subregion-specific functional anatomy and roles in motivated behaviors. Progress in Neurobiology, 130, 29-70.

Rosenblatt, J. S. (1967). Nonhormonal basis of maternal behavior in the rat. Science, 156(3781), 1512-1513.

Rosenblatt, J. S., & Siegel, H. I. (1981). Factors governing the onset and maintenance of maternal behavior among nonprimate mammals. In D. J. Gubernick & P. H. Klopfer (Eds.), Parental care in mammals (pp. 13-76). Boston, MA:Springer.

Sabihi, S., Dong, S. M., Durosko, N. E., & Leuner, B. (2014). Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period. Frontiers in Behavioral Neuroscience, 8, 258.

Seifritz, E., Esposito F., Neuhoff, J. G., Lüthi, A., Mustovic, H., Dammann, G.,... Di Salle, F. (2003). Differential sex-independent amygdala response to infant crying and laughing in parents versus nonparents. Biological Psychiatry, 54(12), 1367-1375.

Seip, K. M., & Morrell, J. I. (2009). Transient inactivation of the ventral tegmental area selectively disrupts the expression of conditioned place preference for pup-but not cocaine-paired contexts. Behavioral Neuroscience, 123(6), 1325-1338.

Seip, K. M., Pereira, M., Wansaw, M. P., Reiss, J. I., Dziopa, E. I., & Morrell, J. I. (2008). Incentive salience of cocaine across the postpartum period of the female rat. Psychopharmacology, 199(1), 119-130.

Sesack, S. R., & Grace, A. A. (2010). Cortico-basal ganglia reward network:Microcircuitry. Neuropsychopharmacology, 35(1), 27-47.

Stolzenberg, D. S., & Champagne, F. A. (2016). Hormonal and non-hormonal bases of maternal behavior:The role of experience and epigenetic mechanisms. Hormones and Behavior, 77, 204-210.

Strathearn, L. (2011). Maternal neglect:Oxytocin, dopamine and the neurobiology of attachment. Journal of Neuroendocrinology, 23(11), 1054-1065.

Swain, J. E., Tasgin, E., Mayes, L. C., Feldman, R., Constable, R. T., & Leckman, J. F. (2008). Maternal brain response to own baby-cry is affected by cesarean section delivery. Journal of Child Psychology & Psychiatry, 49(10), 1042-1052.

Tzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm:Update of the last decade. Addiction Biology, 12(3-4), 227-462.

Wansaw, M. P., Pereira, M., & Morrell, J. I. (2008). Characterization of maternal motivation in the lactating rat:Contrasts between early and late postpartum responses. Hormones and Behavior, 54(2), 294-301.

Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M., & Dulac, C. G. (2014). Galanin neurons in the medial preoptic area govern parental behaviour. Nature, 509(7500), 325-330.

Zha, X., & Xu, X. H. (2015). Dissecting the hypothalamic pathways that underlie innate behaviors. Neuroscience Bulletin, 31(6), 629-648.