doi:

DOI: 10.3724/SP.J.1042.2019.00465

Advances in Psychological Science (心理科学进展) 2019/27:3 PP.465-474

Visualization of mental representation: Noise-based reverse correlation image classification technology


Abstract:
Studies of the mental representation of images in social psychology have encountered difficulty in accurately portraying psychological activity. Over the past decade, reverse correlation image classification has emerged as a new psychophysical method that assumes there is a relationship between an observer's response and visual noise, and that the response is based on the observer's social judgment criteria, and are not random. Performing a sufficient number of weight calculations on the corresponding noise patterns of the observer's reaction allows us to visualize the intrinsic evaluation characteristics of the observer. The use of reverse correlation image classification technology has achieved some results in the areas of trait research, ethnicity, and intergroup bias. In the future, however, it is necessary to solve the problems of excessive experimental trials, separation of mixed noise, and subjects' performance, in order to achieve more realistic mental representations.

Key words:face,mental representation,reverse correlation image classification technology

ReleaseDate:2019-03-01 06:48:05



侯春娜. (2017). 面孔:群际信任的进化密码. 北京:科学出版社

刘志军. (2017). 群际认知的面孔补偿效应——基于反向相关图像分类任务的研究(博士论文). 吉林大学.

Adler, R. J., & Hasofer, A. M. (1976). Level crossings for random fields. The Annals of Probability, 4(1), 1-12.

Bijvank, M. (2014). Periodic review inventory systems with a service level criterion. Journal of the Operational Research Society, 65(12), 1853-1863.

Brinkman, L., Todorov, A., & Dotsch, R. (2017). Visualising mental representations:A primer on noise-based reverse correlation in social psychology. European Review of Social Psychology, 28(1), 333-361.

Brown-Iannuzzi, J. L., Dotsch, R., Cooley, E., & Payne, B. K. (2017). The relationship between mental representations of welfare recipients and attitudes toward welfare. Psychological Science, 28(1), 92-103.

Chen, C., Garrod, O., Schyns, P., & Jack, R. (2017). Mapping dynamic conversational facial expressions across cultures. Journal of Vision, 17(10), 834-834.

Clark, C. M., Gosselin, F., & Goghari, V. M. (2013). Aberrant patterns of visual facial information usage in schizophrenia. Journal of Abnormal Psychology, 122(2), 513-519.

Dotsch, R., & Todorov, A. (2012). Reverse correlating social face perception. Social Psychological and Personality Science, 3(5), 562-571.

Dotsch, R., Wigboldus, D. H. J., Langner, O., & van Knippenberg, A. (2008). Ethnic out-group faces are biased in the prejudiced mind. Psychological Science, 19(10), 978-980.

Dunham, Y., Srinivasan, M., Dotsch, R., & Barner, D. (2014). Religion insulates ingroup evaluations:The development of intergroup attitudes in India. Developmental Science, 17(2), 311-319.

Dotsch, R., Wigboldus, D. H., & Van, K. A.. (2011). Biased allocation of faces to social categories. Journal of Personality and Social Psychology, 100(6), 999-1014.

Fiske, S. T. (2015). Intergroup biases:A focus on stereotype content. Current Opinion in Behavioral Sciences, 3, 45-50.

Gosselin, F., Bacon, B. A., & Mamassian, P. (2004). Internal surface representations approximated by reverse correlation. Vision research, 44(21), 2515-2520.

Gunaydin, G., & Delong, J. E. (2015). Reverse correlating love:Highly passionate women idealize their partner's facial appearance. Plos One, 10(3), e0121094.

Imhoff, R., Woelki, J., Hanke, S., & Dotsch, R. (2013). Warmth and competence in your face! Visual encoding of stereotype content. Frontiers in Psychology, 4(386), 1-8.

Jack, R. E., Caldara, R., & Schyns, P. G. (2012). Internal representations reveal cultural diversity in expectations of facial expressions of emotion. Journal of Experimental Psychology:General, 141(1), 19-25.

Johnson, K. L., Iida, M., & Tassinary, L. G. (2012). Person (mis)perception:functionally biased sex categorization of bodies. Proceedings of the Royal Society B Biological Sciences, 279(1749), 4982-4989.

Karremans, J.C., Dotsch, R., & Corneille, O. (2011). Romantic relationship status biases memory of faces of attractive opposite-sex others:Evidence from a reverse-correlation paradigm. Cognition, 121(3), 422-426.

Krosch, A. R., & Amodio, D. M. (2014). Economic scarcity alters the perception of race. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9079-9084.

Lick, D. J., Carpinella, C. M., Preciado, M. A., Spunt, R. P., & Johnson, K. L. (2013). Reverse-correlating mental representations of sex-typed bodies:The effect of number of trials on image quality. Frontiers in Psychology, 4(2), 476-484.

Mangini, M. C., & Biederman, I. (2004). Making the ineffable explicit:Estimating the information employed for face classifications. Cognitive Science, 28(2), 209-226.

Martin-Malivel, J., Mangini, M. C., Fagot, J., & Biederman, I. (2010). Do humans and baboons use the same information when categorizing human and baboon faces?. Psychological Science, 17(7), 599-607.

Nunnari, F., & Heloir, A. (2017). Generating virtual characters from personality traits via reverse correlation and linear programming. Conference on Autonomous Agents and Multiagent Systems, 1661-1663.

Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National Academy of Sciences, 105(32), 11087-11092.

Paulus, A., Rohr, M., Dotsch, R., & Wentura, D. (2016). Positive feeling, negative meaning:Visualizing the mental representations of in-group and out-group smiles. PloS one, 11(3), e0151230.

Ponsot, E., Arias, P., & Aucouturier, J. J. (2018). Uncovering mental representations of smiled speech using reverse correlation. Journal of the Acoustical Society of America, 143(1), 19-24.

Ratner, K. G., Dotsch, R., Wigboldus, D. H., van Knippenberg, A., & Amodio, D. M. (2014). Visualizing minimal ingroup and outgroup faces:implications for impressions, attitudes, and behavior. Journal of Personality and Social Psychology, 106(6), 897-911.

Saegusa, C., Yamaoka, M., & Watanabe, K. (2015). Seeing faces in noise:Exploring machine and human face detection processes by the reverse correlation method. Paper presented at the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Siem Reap, Cambodia.

Todorov, A., Dotsch, R., Wigboldus, D. H. J., & Said, C. P. (2011). Data-driven methods for modeling social perception. Social and Personality Psychology Compass, 5(10), 775-791.

Todorov, A., Olivola, C. Y., Dotsch, R., & Mende-Siedlecki, P. (2015). Social attributions from faces:determinants, consequences, accuracy, and functional significance. Annual Review of Psychology, 66(1), 519-545.

van Driel, S. D. (2017). Prediction of Self Perception based on Dominance and Trustworthiness by using Reverse Correlation. (Unpublished master's thesis). Utrecht University, Netherlands.

Van Rijsbergen, N., Jaworska, K., Rousselet, G. A., & Schyns, P. G. (2014). With age comes representational wisdom in social signals. Current Biology, 24(23), 2792-2796.

Young, A. I. (2014). Seeing scary:Predicting variation in the scariness of the mental representations of spiders. (Unpublished doctoral dissertation). The Ohio State University, Ohio State.