DOI: 10.3724/SP.J.1042.2020.00111

Advances in Psychological Science (心理科学进展) 2020/28:1 PP.111-127

Computational psychiatry: A new perspective on research and clinical applications in depression

Depression, a complex and heterogeneous mental disorder, leads to great global burdens of disease. Although diagnosis based on nosology is broadly used in several domains, it is still unable to direct the exploration of pathological mechanism of depression. In addition, several treatments developed by this diagnosis have poor outcomes due to its low prediction validity. Computational approaches to psychiatry remedy those limitations and help to improve understanding, prediction and treatment for depression by two complementary approaches:data-driven and theory-driven. Theory-driven approaches apply models to multiple levels of analysis from the prior knowledge or hypothesis of depression. Data-driven approaches, however, adopt machine-learning methods to analyze high-dimensional data to improve the diagnostic and predictive accuracies of depression, and eventually, promote the treatment effects. With the development and combination of these two approaches as well as the integration of resources, it is promising to cure depression and prevent it from occurrence.

Key words:depression,computational psychiatry,computational models,machine learning,diagnosis,treatment

ReleaseDate:2019-12-28 14:18:57

孙也婷, 陈桃林, 何度, 董再全, 程勃超, 王淞,… 龚启勇. (印刷中) 基于精神影像和人工智能的抑郁症客观生物标志物研究进展. 生物化学与生物物理进展.

文宏伟, 陆菁菁, 何晖光. (2018). 机器学习在神经精神疾病诊断及预测中的应用. 协和医学杂志, 9(1), 19-24.

谢小华, 冯建峰. (2019). 上海市脑与类脑智能基础转化应用研究的现状及展望. 心理学通讯, 2(2), 84-87.

Almgren, H., van de Steen, F., Kuhn, S., Razi, A., Friston, K., & Marinazzo, D. (2018). Variability and reliability of effective connectivity within the core default mode network:A multi-site longitudinal spectral DCM study. Neuroimage, 183, 757-768. doi:10.1016/j.neuroimage. 2018.08.053

Andrews, S., Tsochantaridis, I., & Hofmann, T. (2002). Support vector machines for multiple-instance learning. Paper presented at the Advances in Neural Information Processing Systems 15, Vancouver, British Columbia, Canada.

Arnsten, A. F. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410-422. doi:10.1038/nrn2648

Ashby, W. R. (1947). Principles of the self-organizing dynamic system. Journal of General Psychology, 37(2), 125-128. doi:10.1080/00221309.1947.9918144

Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®):American Psychiatric Pub.

Bahn, S., Noll, R., Barnes, A., Schwarz, E., & Guest, P. C. (2011). Challenges of introducing new biomarker products for neuropsychiatric disorders into the market. International Review of Neurobiology, 101, 299-327. doi:10.1016/B978-0-12-387718-5.00012-2

Boes, A. D., Uitermarkt, B. D., Albazron, F. M., Lan, M. J., Liston, C., Pascual-Leone, A.,… Fox, M. D. (2018). Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimulation, 11(3), 575-581. doi:10.1016/j.brs.2018.01.029

Bzdok, D., & Meyer-Lindenberg, A. (2018). Machine learning for precision psychiatry:Opportunities and challenges. Biological Psychiatry:Cognitive Neuroscience and Neuroimaging, 3(3), 223-230. doi:10.1016/j.bpsc. 2017.11.007

Chekroud, A. M. (2017). Bigger data, harder questions-opportunities throughout mental health care. JAMA Psychiatry, 74(12), 1183-1184. doi:10.1001/jamapsychiatry. 2017.3333

Chekroud, A. M., Gueorguieva, R., Krumholz, H. M., Trivedi, M. H., Krystal, J. H., & McCarthy, G. (2017). Reevaluating the efficacy and predictability of antidepressant treatments:A symptom clustering approach. JAMA Psychiatry, 74(4), 370-378. doi:10.1001/jamapsychiatry. 2017.0025

Chekroud, A. M., Lane, C. E., & Ross, D. A. (2017). Computational psychiatry:Embracing uncertainty and focusing on individuals, not averages. Biological Psychiatry, 82(6), e45-e47. doi:10.1016/j.biopsych.2017.07.011

Chekroud, A. M., Zotti, R. J., Shehzad, Z., Gueorguieva, R., Johnson, M. K., Trivedi, M. H.,… Corlett, P. R. (2016). Cross-trial prediction of treatment outcome in depression:A machine learning approach. Lancet Psychiatry, 3(3), 243-250. doi:10.1016/S2215-0366(15)00471-X

Chen, C., Takahashi, T., Nakagawa, S., Inoue, T., & Kusumi, I. (2015). Reinforcement learning in depression:A review of computational research. Neuroscience and Biobehavioral Reviews, 55, 247-267. doi:10.1016/j.neubiorev.2015.05.005

Cicero, D. C., Martin, E. A., Becker, T. M., & Kerns, J. G. (2014). Reinforcement learning deficits in people with schizophrenia persist after extended trials. Psychiatry Research, 220(3), 760-764. doi:10.1016/j.psychres.2014.08.013

Clark, L., Chamberlain, S. R., & Sahakian, B. J. (2009). Neurocognitive mechanisms in depression:Implications for treatment. Annual Review of Neuroscience, 32(1), 57-74. doi:10.1146/annurev.neuro.31.060407.125618

Cooper, J. A., Arulpragasam, A. R., & Treadway, M. T. (2018). Anhedonia in depression:Biological mechanisms and computational models. Current Opinion in Behavioral Sciences, 22, 128-135. doi:10.1016/j.cobeha.2018.01.024

Cui, Z., & Gong, G. (2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Neuroimage, 178, 622-637. doi:10.1016/j.neuroimage. 2018.06.001

Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis:The seven pillars of RDoC. BMC Medicine, 11(1), 126. doi:10.1186/1741-7015-11-126

Czajkowski, S. M., Powell, L. H., Adler, N., Naar-King, S., Reynolds, K. D., Hunter, C. M.,… Charlson, M. E. (2015). From ideas to efficacy:The ORBIT model for developing behavioral treatments for chronic diseases. Health Psychology, 34(10), 971-982. doi:10.1037/hea0000161

Davey, C., Breakspear, M., Pujol, J., & Harrison, B. (2018). 201. A dynamic causal model of the depressed self. Biological Psychiatry, 83(9). doi:10.1016/j.biopsych. 2018.02.220

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69(6), 1204-1215. doi:10.1016/j.neuron.2011.02.027

Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704-1711. doi:10.1038/nn1560

DeBattista, C., Kinrys, G., Hoffman, D., Goldstein, C., Zajecka, J., Kocsis, J.,… Fava, M. (2011). The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression. Journal of Psychiatric Research, 45(1), 64-75. doi:10.1016/j.jpsychires.2010.05.009

DeRubeis, R. J., Cohen, Z. D., Forand, N. R., Fournier, J. C., Gelfand, L. A., & Lorenzo-Luaces, L. (2014). The Personalized Advantage Index:Translating research on prediction into individualized treatment recommendations. A demonstration. PloS One, 9(1), e83875. doi:10.1371/journal.pone.0083875

Dillon, D. G., Wiecki, T., Pechtel, P., Webb, C., Goer, F., Murray, L.,… Pizzagalli, D. A. (2015). A computational analysis of flanker interference in depression. Psychological Medicine, 45(11), 2333-2344. doi:10.1017/S0033291715000276

Doll, B. B., Bath, K. G., Daw, N. D., & Frank, M. J. (2016). Variability in dopamine genes dissociates model-based and model-free reinforcement learning. Journal of Neuroscience, 36(4), 1211-1222. doi:10.1523/JNEUROSCI. 1901-15.2016

Donde, C., Amad, A., Nieto, I., Brunoni, A. R., Neufeld, N. H., Bellivier, F.,… Geoffroy, P. A. (2017). Transcranial direct-current stimulation (tDCS) for bipolar depression:A systematic review and meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 78, 123-131. doi:10.1016/j.pnpbp.2017.05.021

Drucker, E., & Krapfenbauer, K. (2013). Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. The EPMA Journal, 4(1), 7. doi:10.1186/1878-5085-4-7

Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y.,… Liston, C. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23(1), 28-38. doi:10.1038/nm.4246

Dutilh, G., Vandekerckhove, J., Forstmann, B. U., Keuleers, E., Brysbaert, M., & Wagenmakers, E. J. (2012). Testing theories of post-error slowing. Attention Perception & Psychophysics, 74(2), 454-465. doi:10.3758/s13414-011-0243-2

Eldar, E., Roth, C., Dayan, P., & Dolan, R. J. (2018). Decodability of reward learning signals predicts mood fluctuations. Current Biology, 28(9), 1433-1439. doi:10.1016/j.cub.2018.03.038

Etkin, A. (2018). Addressing the causality gap in human psychiatric neuroscience. JAMA Psychiatry, 75(1), 3-4. doi:10.1001/jamapsychiatry.2017.3610

Farhan, A. A., Lu, J., Bi, J., Russell, A., Wang, B., & Bamis, A. (2016). Multi-view Bi-clustering to Identify Smartphone Sensing Features Indicative of Depression. Paper presented at the 2016 IEEE First International Conference on Connected Health:Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA.

Feng, Z., Xu, S., Huang, M., Shi, Y., Xiong, B., & Yang, H. (2016). Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 64, 124-130. doi:10.1016/j.pnpbp.2015.07.008

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling models in cognitive neuroscience:Advantages, applications, and extensions. Annual Review of Psychology, 67, 641-666. doi:10.1146/annurev-psych-122414-033645

Frässle, S., Lomakina, E. I., Razi, A., Friston, K. J., Buhmann, J. M., & Stephan, K. E. (2017). Regression DCM for fMRI. Neuroimage, 155, 406-421. doi:10.1016/j.neuroimage.2017.02.090

Frässle, S., Yao, Y., Schobi, D., Aponte, E. A., Heinzle, J., & Stephan, K. E. (2018). Generative models for clinical applications in computational psychiatry. Wiley Interdisciplinary Reviews:Cognitive Science, 9(3), e1460. doi:10.1002/wcs.1460

Friston, K. J. (2010). The free-energy principle:A unified brain theory? Nature Reviews Neuroscience, 11(2), 127-138. doi:10.1038/nrn2787

Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273-1302. doi:10.1016/s1053-8119(03)00202-7

Friston, K. J., Kahan, J., Biswal, B., & Razi, A. (2014). A DCM for resting state fMRI. Neuroimage, 94, 396-407. doi:10.1016/j.neuroimage.2013.12.009

Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., van Wijk, B. C. M.,… Zeidman, P. (2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage, 128, 413-431. doi:10.1016/j. neuroimage. 2015.11.015

Friston, K. J., Preller, K. H., Mathys, C., Cagnan, H., Heinzle, J., Razi, A., & Zeidman, P. (2019). Dynamic causal modelling revisited. Neuroimage, 199, 730-744. doi:10.1016/j.neuroimage.2017.02.045

Gilmartin, M. R., Balderston, N. L., & Helmstetter, F. J. (2014). Prefrontal cortical regulation of fear learning. Trends in Neurosciences, 37(8), 455-464. doi:10.1016/j.tins.2014.05.004

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30(1), 535-574. doi:10.1146/annurev.neuro.29.051605.113038

Goldberg, D., & Fawcett, J. (2012). The importance of anxiety in both major depression and bipolar disorder. Depression and Anxiety, 29(6), 471-478. doi:10.1002/da.21939

Gomez, P., & Perea, M. (2014). Decomposing encoding and decisional components in visual-word recognition:A diffusion model analysis. Quarterly Journal of Experimental Psychology, 67(12), 2455-2466. doi:10.1080/17470218.2014.937447

Hammen, C. (2018). Risk factors for depression:An autobiographical review. Annual Review of Clinical Psychology, 14, 1-28. doi:10.1146/annurev-clinpsy-050817-084811

Hanks, T. D., Ditterich, J., & Shadlen, M. N. (2006). Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nature Neuroscience, 9(5), 682-689. doi:10.1038/nn1683

Haque, A., Guo, M., Miner, A. S., & Li, F.-F. (2018). Measuring depression symptom severity from spoken language and 3D facial expressions. Arxiv Preprint Arxiv:1811.08592.

Heller, A. S., Ezie, C. E. C., Otto, A. R., & Timpano, K. R. (2018). Model-based learning and individual differences in depression:The moderating role of stress. Behaviour Research and Therapy, 111, 19-26. doi:10.1016/j.brat. 2018.09.007

Herrman, H., Kieling, C., McGorry, P., Horton, R., Sargent, J., & Patel, V. (2019). Reducing the global burden of depression:A Lancet-World Psychiatric Association Commission. The Lancet, 393(10189), e42-e43. doi:10.1016/s0140-6736(18)32408-5

Honnorat, N., Dong, A., Meisenzahl-Lechner, E., Koutsouleris, N., & Davatzikos, C. (2017). Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods. Schizophrenia Research. doi:10.1016/j. schres.2017.12.008

Husain, M., & Roiser, J. P. (2018). Neuroscience of apathy and anhedonia:A transdiagnostic approach. Nature Reviews Neuroscience, 19(8), 470-484. doi:10.1038/s41583-018-0029-9

Huys Q. J. M. (2015) Computational psychiatry. In:Jaeger D., Jung R. (Eds.) Encyclopedia of Computational Neuroscience (pp. 775-783). Springer, New York, NY

Huys, Q. J. M. (2018a). Advancing clinical improvements for patients using the theory-driven and data-driven branches of computational psychiatry. JAMA Psychiatry, 75(3), 225-226. doi:10.1001/jamapsychiatry.2017.4246

Huys, Q. J. M. (2018b). Bayesian approaches to learning and decision-making. In A. Anticevic & J. D. Murray (Eds.), Computational Psychiatry (pp. 247-271):Academic Press.

Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19(3), 404-413. doi:10.1038/nn.4238

Huys, Q. J. M., Moutoussis, M., & Williams, J. (2011). Are computational models of any use to psychiatry? Neural Networks, 24(6), 544-551. doi:10.1016/j.neunet.2011.03.001

Insel, T. R., & Cuthbert, B. N. (2015). Medicine. Brain disorders? Precisely. Science, 348(6234), 499-500. doi:10.1126/science.aab2358

Janssen, R. J., Mourao-Miranda, J., & Schnack, H. G. (2018). Making individual prognoses in psychiatry using neuroimaging and machine learning. Biological Psychiatry:Cognitive Neuroscience and Neuroimaging, 3(9), 798-808. doi:10.1016/j.bpsc.2018.04.004

Kapur, S., Phillips, A. G., & Insel, T. R. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Molecular Psychiatry, 17(12), 1174-1179. doi:10.1038/mp.2012.105

Kendler, K. S. (2008). Explanatory models for psychiatric illness. American Journal of Psychiatry, 165(6), 695-702. doi:10.1176/appi.ajp.2008.07071061

Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13852-13857. doi:10.1073/pnas.1101328108

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539

Ledford, H. (2014). Medical research:If depression were cancer. Nature, 515(7526), 182-184. doi:10.1038/515182a

Lee, D., Seo, H., & Jung, M. W. (2012). Neural basis of reinforcement learning and decision making. Annual Review of Neuroscience, 35(1), 287-308. doi:10.1146/annurev-neuro-062111-150512

Li, B., Daunizeau, J., Stephan, K. E., Penny, W., Hu, D., & Friston, K. (2011). Generalised filtering and stochastic DCM for fMRI. Neuroimage, 58(2), 442-457. doi:10.1016/j.neuroimage.2011.01.085

Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), 321-332. doi:10.1038/nrg3920

Lin, T., Liu, T., Lin, Y., Yan, L., Chen, Z., & Wang, J. (2017). Comparative study on serum levels of macro and trace elements in schizophrenia based on supervised learning methods. Journal of Trace Elements in Medicine and Biology, 43, 202-208. doi:10.1016/j.jtemb.2017.03.010

Lu, Q., Li, H., Luo, G., Wang, Y., Tang, H., Han, L., & Yao, Z. (2012). Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder:A dynamic causal modeling study on MEG. Neuroscience Letters, 523(2), 125-130. doi:10.1016/j.neulet.2012.06.058

Lu, Y., Tang, C., Liow, C. S., Ng, W. W., Ho, C. S., & Ho, R. C. (2014). A regressional analysis of maladaptive rumination, illness perception and negative emotional outcomes in Asian patients suffering from depressive disorder. Asian Journal of Psychiatry, 12, 69-76. doi:10.1016/j.ajp.2014.06.014

Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154-162. doi:10.1038/nn.2723

Maia, T. V., Huys, Q. J. M., & Frank, M. J. (2017). Theory-based computational psychiatry. Biological Psychiatry, 82(6), 382-384. doi:10.1016/j.biopsych.2017.07.016

Malhi, G. S., & Mann, J. J. (2018). Depression. The Lancet, 392(10161), 2299-2312. doi:10.1016/s0140-6736(18)31948-2

Mazurek, M. E., Roitman, J. D., Ditterich, J., & Shadlen, M. N. (2003). A role for neural integrators in perceptual decision making. Cerebral Cortex, 13(11), 1257-1269. doi:10.1093/cercor/bhg097

McEwen, B. S., & Morrison, J. H. (2013). The brain on stress:Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 16-29. doi:10.1016/j.neuron.2013.06.028

Mendelson, A. F., Zuluaga, M. A., Lorenzi, M., Hutton, B. F., Ourselin, S., & Alzheimer's Disease Neuroimaging, I. (2017). Selection bias in the reported performances of AD classification pipelines. Neuroimage:Clinical, 14, 400-416. doi:10.1016/j.nicl.2016.12.018

Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72-80. doi:10.1016/j.tics.2011.11.018

Moustafa, A. A., Keri, S., Somlai, Z., Balsdon, T., Frydecka, D., Misiak, B., & White, C. (2015). Drift diffusion model of reward and punishment learning in schizophrenia:Modeling and experimental data. Behavioural Brain Research, 291, 147-154. doi:10.1016/j.bbr.2015.05.024

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3), 139-154. doi:10.1016/

Nouretdinov, I., Costafreda, S. G., Gammerman, A., Chervonenkis, A., Vovk, V., Vapnik, V., & Fu, C. H. (2011). Machine learning classification with confidence:Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage, 56(2), 809-813. doi:10.1016/j. neuroimage.2010.05.023

Patel, M. J., Andreescu, C., Price, J. C., Edelman, K. L., Reynolds, C. F., 3rd, & Aizenstein, H. J. (2015). Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. International Journal of Geriatric Psychiatry, 30(10), 1056-1067. doi:10.1002/gps.4262

Patel, M. J., Khalaf, A., & Aizenstein, H. J. (2016). Studying depression using imaging and machine learning methods. Neuroimage:Clinical, 10, 115-123. doi:10.1016/j.nicl. 2015.11.003

Paulus, M. P., Huys, Q. J., & Maia, T. V. (2016). A roadmap for the development of applied computational psychiatry. Biological Psychiatry:Cognitive Neuroscience and Neuroimaging, 1(5), 386-392. doi:10.1016/j.bpsc.2016.05.001

Pe, M. L., Vandekerckhove, J., & Kuppens, P. (2013). A diffusion model account of the relationship between the emotional flanker task and rumination and depression. Emotion, 13(4), 739-747. doi:10.1037/a0031628

Pizzagalli, D. A. (2014). Depression, stress, and anhedonia:Toward a synthesis and integrated model. Annual Review of Clinical Psychology, 10(1), 393-423. doi:10.1146/annurev-clinpsy-050212-185606

Radenbach, C., Reiter, A. M., Engert, V., Sjoerds, Z., Villringer, A., Heinze, H. J.,… Schlagenhauf, F. (2015). The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology, 53, 268-280. doi:10.1016/j.psyneuen.2014.12.017

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. doi:10.1037/0033-295x.85.2.59

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model:Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873-922. doi:10.1162/neco. 2008.12-06-420

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model:Current issues and history. Trends in Cognitive Sciences, 20(4), 260-281. doi:10.1016/j.tics.2016.01.007

Razi, A., Kahan, J., Rees, G., & Friston, K. J. (2015). Construct validation of a DCM for resting state fMRI. Neuroimage, 106, 1-14. doi:10.1016/j.neuroimage.2014.11.027

Robinson, O. J., & Chase, H. W. (2017). Learning and choice in mood disorders:Searching for the computational parameters of anhedonia. Computational Psychiatry, 1(1), 208-233. doi:10.1162/CPSY_a_00009

Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression:A systematic review and meta-analysis. Psychological Medicine, 44(10), 2029-2040. doi:10.1017/S0033291713002535

Rothkirch, M., Tonn, J., Kohler, S., & Sterzer, P. (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140(4), 1147-1157. doi:10.1093/brain/awx025

Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Warden, D.,… Fava, M. (2006). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps:A STAR*D report. American Journal of Psychiatry, 163(11), 1905-1917. doi:10.1176/ajp.2006.163.11.1905

Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625. doi:10.1038/nrn3381

Rutledge, R. B., Moutoussis, M., Smittenaar, P., Zeidman, P., Taylor, T., Hrynkiewicz, L.,… Dolan, R. J. (2017). Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry, 74(8), 790-797. doi:10.1001/jamapsychiatry.2017.1713

Schnack, H. G., & Kahn, R. S. (2016). Detecting neuroimaging biomarkers for psychiatric disorders:Sample size matters. Frontiers in Psychiatry, 7, 50. doi:10.3389/fpsyt.2016.00050

Schwabe, L. (2013). Stress and the engagement of multiple memory systems:Integration of animal and human studies. Hippocampus, 23(11), 1035-1043. doi:10.1002/hipo.22175

Schwabe, L., & Wolf, O. T. (2011). Stress-induced modulation of instrumental behavior:From goal-directed to habitual control of action. Behavioural Brain Research, 219(2), 321-328. doi:10.1016/j.bbr.2010.12.038

Sejnowski, T. J., Koch, C., & Churchland, P. S. (1988). Computational neuroscience. Science, 241(4871), 1299-1306. doi:10.1126/science.3045969

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning:From theory to algorithms:Cambridge University Press.

Shatte, A. B. R., Hutchinson, D. M., & Teague, S. J. (2019). Machine learning in mental health:A scoping review of methods and applications. Psychological Medicine, 49(9), 1426-1448. doi:10.1017/S0033291719000151

Singh, A., Thakur, N., & Sharma, A. (2016). A review of supervised machine learning algorithms. Paper presented at the International Conference on Computing for Sustainable Global Development, New Delhi, India.

Stephan, K. E., Iglesias, S., Heinzle, J., & Diaconescu, A. O. (2015). Translational perspectives for computational neuroimaging. Neuron, 87(4), 716-732. doi:10.1016/j. neuron.2015.07.008

Stephan, K. E., Kasper, L., Harrison, L. M., Daunizeau, J., den Ouden, H. E., Breakspear, M., & Friston, K. J. (2008). Nonlinear dynamic causal models for fMRI. Neuroimage, 42(2), 649-662. doi:10.1016/j.neuroimage.2008.04.262

Stephan, K. E., & Mathys, C. (2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 25, 85-92. doi:10.1016/j.conb.2013.12.007

Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. Neuroimage, 49(4), 3099-3109. doi:10.1016/j.neuroimage.2009.11.015

Stephan, K. E., Schlagenhauf, F., Huys, Q. J. M., Raman, S., Aponte, E. A., Brodersen, K. H.,… Heinz, A. (2017). Computational neuroimaging strategies for single patient predictions. Neuroimage, 145(Pt B), 180-199. doi:10.1016/j.neuroimage.2016.06.038

Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L.,… Corlett, P. R. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84(9), 634-643. doi:10.1016/j.biopsych.2018.05.015

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:An introduction:MIT press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:An introduction:MIT press.

Tran, B. X., Vu, G. T., Ha, G. H., Vuong, Q. H., Ho, M. T., Vuong, T. T.,… Ho, R. C. M. (2019). Global evolution of research in artificial intelligence in health and medicine:A bibliometric study. Journal of Clinical Medicine, 8(3), 360. doi:10.3390/jcm8030360

Turner, B. M., van Maanen, L., & Forstmann, B. U. (2015). Informing cognitive abstractions through neuroimaging:The neural drift diffusion model. Psychological Review, 122(2), 312-336. doi:10.1037/a0038894

van Ravenzwaaij, D., & Oberauer, K. (2009). How to use the diffusion model:Parameter recovery of three methods:EZ, fast-dm, and DMAT. Journal of Mathematical Psychology, 53(6), 463-473. doi:10.1016/

Vos, T., Allen, C., Arora, M., Barber, R. M., Bhutta, Z. A., Brown, A.,… Murray, C. J. L. (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015:A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1545-1602. doi:10.1016/s0140-6736(16)31678-6

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology:A practical introduction. Experimental Psychology, 60(6), 385-402. doi:10.1027/1618-3169/a000218

Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001). Constrained k-means clustering with background knowledge. Paper presented at the Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, USA.

Wang, X. W., Nie, D., & Lu, B. L. (2014). Emotional state classification from EEG data using machine learning approach. Neurocomputing, 129, 94-106. doi:10.1016/j. neucom.2013.06.046

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2009). Dysphoria and memory for emotional material:A diffusion-model analysis. Cognition & Emotion, 23(1), 181-205. doi:10.1080/02699930801976770

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010a). Anxiety enhances threat processing without competition among multiple inputs:A diffusion model analysis. Emotion, 10(5), 662-677. doi:10.1037/a0019474

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010b). Using diffusion models to understand clinical disorders. Journal of Mathematical Psychology, 54(1), 39-52. doi:10.1016/

WHO. (2018). Depression. Retrieved from

Wiecki, T. V., Poland, J., & Frank, M. J. (2015). Model-based cognitive neuroscience approaches to computational psychiatry:Clustering and classification. Clinical Psychological Science, 3(3), 378-399. doi:10.1177/2167702614565359

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM:Hierarchical bayesian estimation of the drift-diffusion model in python. Frontiers in Neuroinformatics, 7, 14. doi:10.3389/fninf.2013.00014

Williams, L. M., Korgaonkar, M. S., Song, Y. C., Paton, R., Eagles, S., Goldstein-Piekarski, A.,… Etkin, A. (2015). Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology, 40(10), 2398-2408. doi:10.1038/npp.2015.89

Wunderlich, K., Dayan, P., & Dolan, R. J. (2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15(5), 786-791. doi:10.1038/nn.3068