DOI: 10.3724/SP.J.1042.2020.00178

Advances in Psychological Science (心理科学进展) 2020/28:1 PP.178-190

Network analysis and its applications in psychology

Network analysis models (or Network Psychometrics) have been widely used in psychology research in recent years. Unlike latent variable models which conceive observable variables as outcomes of unobservable latent factors, network analysis models apply the graph theory to construct a network to depict the associations among observable variables. The observable variables are treated as nodes and the associations between them are treated as edges. As such, network analysis models reveal the relationships among observable variables and the dynamic system resulted from the interactions between these observable variables. With indices reflecting individual nodes' characteristics (such as centrality) and network structural characteristics (such as small-worldness), network analysis models provide a new perspective for visualization and for studying various psychological phenomena. In the past decade, network analysis models have been applied in the fields of personality, social, and clinical psychology as well as psychiatry. Future research should continue to develop and improve the methods of network analysis models, making them applicable to more types of data and broader research fields.

Key words:network analysis,latent variable,psychometrics,psychopathology,personality traits

ReleaseDate:2019-12-28 14:18:59

胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题:从危机到契机. 心理科学进展, 24(9), 1504-1518.

Afzali, M. H., Sunderland, M., Teesson, M., Carragher, N., Mills, K., & Slade, T. (2017). A network approach to the comorbidity between posttraumatic stress disorder and major depressive disorder:The role of overlapping symptoms. Journal of Affective Disorders, 208, 490-496.

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed). Washington, DC:Author.

American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders (4th ed, text rev.). Washington, DC:Author.

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorder (5th ed). Arlington, VA:American Psychiatric Publishing.

Bekhuis, E., Schoevers, R., de Boer, M., Peen, J., Dekker, J., van, H., & Boschloo, L. (2018). Symptom-Specific effects of psychotherapy versus combined therapy in the treatment of mild to moderate depression:A network approach. Psychotherapy and Psychosomatics, 87(2), 121-123.

Blanken, T. F., van Der Zweerde, T., van Straten, A., van Someren, E. J. W., Borsboom, D., & Lancee, J. (2019). Introducing network intervention analysis to investigate sequential, Symptom-Specific treatment effects:A demonstration in co-occurring insomnia and depression. Psychotherapy and Psychosomatics, 88(1), 52-54.

Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892-895.

Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089-1108.

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13.

Borsboom, D., & Cramer, A. O. J. (2013). Network analysis:An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91-121.

Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., & Waldorp, L. J. (2011). The small world of psychopathology. PLoS ONE, 6(11), e27407.

Borsboom, D., Fried, E. I., Epskamp, S., Waldorp, L. J., van Borkulo, C. D., van der Maas, H. L. J., & Cramer, A. O. J. (2017). False alarm? A comprehensive reanalysis of "Evidence that psychopathology symptom networks have limited replicability" by Forbes, Wright, Markon, and Krueger (2017). Journal of Abnormal Psychology, 126(7), 989-999.

Borsboom, D., Mellenbergh, G. J., & Heerden, J. van. (2003). The theoretical status of latent variables. Psychological Review, 110(2), 203-219.

Borsboom, D., Robinaugh, D. J., The Psychosystems Group, Rhemtulla, M., & Cramer, A. O. J. (2018). Robustness and replicability of psychopathology networks. World Psychiatry, 17(2), 143-144. 20515

Boschloo, L., van Borkulo, C. D., Rhemtulla, M., Keyes, K. M., Borsboom, D., & Schoevers, R. A. (2015). The network structure of symptoms of the diagnostic and statistical manual of mental disorders. PLoS ONE, 10(9), e0137621.

Brandt, M. J., Sibley, C. G., & Osborne, D. (2019). What is central to political belief system networks? Personality and Social Psychology Bulletin, 45(9), 1352-1364.

Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., … Tuerlinckx, F. (2013). A network approach to psychopathology:New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188.

Bulteel, K., Tuerlinckx, F., Brose, A., & Ceulemans, E. (2018). Improved insight into and prediction of network dynamics by combining VAR and dimension reduction. Multivariate Behavioral Research, 53(6), 853-875.

Cao, X., Wang, L., Cao, C., Fang, R., Chen, C., Hall, B. J., & Elhai, J. D. (2019). Sex differences in global and local connectivity of adolescent posttraumatic stress disorder symptoms. Journal of Child Psychology and Psychiatry, 60(2), 216-224.

Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. O. J. (2015). State of the aRt personality research:A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54, 13-29.

Costantini, G., Richetin, J., Borsboom, D., Fried, E. I., Rhemtulla, M., & Perugini, M. (2015). Development of indirect measures of conscientiousness:Combining a facets approach and network analysis. European Journal of Personality, 29(5), 548-567.

Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019). Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 68-78. 2017.06.011

Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., … Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium:You can't like parties if you don't like people:Dimensions of normal personality as networks. European Journal of Personality, 26(4), 414-431.

Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J., & Borsboom, D. (2010). Comorbidity:A network perspective. Behavioral and Brain Sciences, 33(2-3), 137-150.

Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. J. (2016). Toward a formalized account of attitudes:The causal attitude network (CAN) model. Psychological Review, 123(1), 2-22.

Dalege, J., Borsboom, D., van Harreveld, F., & van der Maas, H. L. J. (2018). The attitudinal entropy (AE) framework as a general theory of individual attitudes. Psychological Inquiry, 29(4), 175-193.

Di Pierro, R., Costantini, G., Benzi, I. M. A., Madeddu, F., & Preti, E. (2018). Grandiose and entitled, but still fragile:A network analysis of pathological narcissistic traits. Personality and Individual Differences, 140, 15-20.

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics:Combining network and latent variable models. Psychometrika, 82(4), 904-927.

Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018). The gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453-480.

Erdős, P., & Rényi, A. (1959). On Random Graphs. I. Publicationes Mathematicae., 6, 290-297.

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239.

Fried, E. I., Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, A. O. J., … Stroebe, M. (2015). From loss to loneliness:The relationship between bereavement and depressive symptoms. Journal of Abnormal Psychology, 124(2), 256-265.

Fried, E. I., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems:A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1-10.

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441.

Haslbeck, J. M. B., & Fried, E. I. (2017). How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychological Medicine, 47(16), 2767-2776.

Haslbeck, J. M. B., & Waldorp, L. J. (2015). MGM:Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data. Retrieved March 19, 2019 from

Hyatt, C. S., Sleep, C. E., Lamkin, J., Maples-Keller, J. L., Sedikides, C., Campbell, W. K., & Miller, J. D. (2018). Narcissism and self-esteem:A nomological network analysis. PLoS ONE, 13(8), e0201088.

Isvoranu, A.-M., van Borkulo, C. D., Boyette, L.-L., Wigman, J. T. W., Vinkers, C. H., Borsboom, D., & Group Investigators. (2017). A network approach to psychosis:Pathways between childhood trauma and psychotic symptoms. Schizophrenia Bulletin, 43(1), 187-196.

Jones, D. N., & Figueredo, A. J. (2013). The core of darkness:Uncovering the heart of the dark. European Journal of Personality, 27(6), 521-531.

Lauritzen, S. L. (1996). Graphical Models. Oxford, England:Clarendon Press.

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent Structure analysis. Boston:Houghton Mill.

Levine, M., & Davidson, E. H. (2005). Gene regulatory networks for development. Proceedings of the National Academy of Sciences, 102(14), 4936-4942.

Liu, Q., Fei, W., Yan, W., Peng, K., Sui, J., & Hu, C. (2019). Questionnaire Data from the Revision of a Chinese Version of Free Will and Determinism Plus Scale and Experiments on the Perceptual Prioritization of the Good Self.

Marcus, D. K., Preszler, J., & Zeigler-Hill, V. (2018). A network of dark personality traits:What lies at the heart of darkness? Journal of Research in Personality, 73, 56-62.

McCrae, R. R., & Costa, P. T. Jr. (2008). Empirical and theoretical status of the five-factor model of personality traits. In G. Boyle, G. Matthews, & D. Saklofske (Eds.), The SAGE Handbook of Personality Theory and Assessment (Vol. 1, pp. 273-294). Thousand Oaks, CA:Sage.

McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour Research and Therapy, 86, 95-104.

McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental Disorders as Causal Systems:A Network Approach to Posttraumatic Stress Disorder. Clinical Psychological Science, 3(6), 836-849.

Milgram, S. (1967). The Small World Problem. Psychology Today, 1(1), 61-67.

Millar, R. B. (2011). Latent variable models. In Maximum Likelihood Estimation and Inference (pp. 202-232). Indianapolis, IN:John Wiley & Sons.

Nagel, M., Watanabe, K., Stringer, S., Posthuma, D., & van der Sluis, S. (2018). Item-level analyses reveal genetic heterogeneity in neuroticism. Nature Communications, 9, Article 905.

Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167-256.

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716-aac4716.

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks:Generalizing degree and shortest paths. Social Networks, 32(3), 245-251.

Opsahl, T., & Panzarasa, P. (2009). Clustering in weighted networks. Social Networks, 31(2), 155-163.

Park, H.-J., & Friston, K. (2013). Structural and functional brain networks:From connections to cognition. Science, 342(6158), 1238411-1238411.

Pourahmadi, M. (2011). Covariance estimation:The GLM and regularization perspectives. Statistical Science, 26(3), 369-387.

Rhemtulla, M., van Bork, R., & Cramer, A. O. J. (in press). Cross-lagged network models. Multivariate Behavioral Research. Retrived April 15, 2019 from

Ruzzano, L., Borsboom, D., & Geurts, H. M. (2015). Repetitive behaviors in autism and obsessive-compulsive disorder:New perspectives from a network analysis. Journal of Autism and Developmental Disorders, 45(1), 192-202.

Santos, H. P., Kossakowski, J. J., Schwartz, T. A., Beeber, L., & Fried, E. I. (2018). Longitudinal network structure of depression symptoms and self-efficacy in low-income mothers. PLoS ONE, 13(1), e0191675.

Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct:A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43-53.

Sporns, O., & Honey, C. J. (2006). Small worlds inside big brains. Proceedings of the National Academy of Sciences, 103(51), 19219-19220.

Teichmann, S. A., & Babu, M. M. (2004). Gene regulatory network growth by duplication. Nature Genetics, 36(5), 492-496.

Tio, P., Epskamp, S., Noordhof, A., & Borsboom, D. (2016). Mapping the manuals of madness:Comparing the ICD-10 and DSM-IV-TR using a network approach. International Journal of Methods in Psychiatric Research, 25(4), 267-276.

Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry, 32(4), 425-443.

van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4(5918), 1-10.

van Borkulo, C. D., Boschloo, L., Kossakowski, J. J., Tio, P., Schoevers, R., Borsboom, D., & Waldorp, L. (2016). Comparing network structures on three aspects:A permutation test. Submitted. Retrived March 19, 2019 from

Wechsler, S. M., Benson, N., Machado, W. D. L., Bachert, C. M. D., & Gums, E. F. (2018). Adult temperament styles:A network analysis of their relationships with the Big Five Personality Model. European Journal of Education and Psychology, 11(1), 61-75.

World Health Organization (WHO). (1993). The ICD-10 Classification of Mental and Behavioural Disorders:Diagnostic Criteria for Research (ICD-10). Geneva:Author.

Xia, M., & He, Y. (2017). Functional connectomics from a "big data" perspective. NeuroImage, 160, 152-167.