doi:

DOI: 10.3724/SP.J.1042.2020.00178

Advances in Psychological Science (心理科学进展) 2020/28:1 PP.178-190

Network analysis and its applications in psychology


Abstract:
Network analysis models (or Network Psychometrics) have been widely used in psychology research in recent years. Unlike latent variable models which conceive observable variables as outcomes of unobservable latent factors, network analysis models apply the graph theory to construct a network to depict the associations among observable variables. The observable variables are treated as nodes and the associations between them are treated as edges. As such, network analysis models reveal the relationships among observable variables and the dynamic system resulted from the interactions between these observable variables. With indices reflecting individual nodes' characteristics (such as centrality) and network structural characteristics (such as small-worldness), network analysis models provide a new perspective for visualization and for studying various psychological phenomena. In the past decade, network analysis models have been applied in the fields of personality, social, and clinical psychology as well as psychiatry. Future research should continue to develop and improve the methods of network analysis models, making them applicable to more types of data and broader research fields.

Key words:network analysis,latent variable,psychometrics,psychopathology,personality traits

ReleaseDate:2019-12-28 14:18:59



胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题:从危机到契机. 心理科学进展, 24(9), 1504-1518.

Afzali, M. H., Sunderland, M., Teesson, M., Carragher, N., Mills, K., & Slade, T. (2017). A network approach to the comorbidity between posttraumatic stress disorder and major depressive disorder:The role of overlapping symptoms. Journal of Affective Disorders, 208, 490-496. https://doi.org/10.1016/j.jad.2016.10.037

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed). Washington, DC:Author.

American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders (4th ed, text rev.). Washington, DC:Author.

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorder (5th ed). Arlington, VA:American Psychiatric Publishing.

Bekhuis, E., Schoevers, R., de Boer, M., Peen, J., Dekker, J., van, H., & Boschloo, L. (2018). Symptom-Specific effects of psychotherapy versus combined therapy in the treatment of mild to moderate depression:A network approach. Psychotherapy and Psychosomatics, 87(2), 121-123. https://doi.org/10.1159/000486793

Blanken, T. F., van Der Zweerde, T., van Straten, A., van Someren, E. J. W., Borsboom, D., & Lancee, J. (2019). Introducing network intervention analysis to investigate sequential, Symptom-Specific treatment effects:A demonstration in co-occurring insomnia and depression. Psychotherapy and Psychosomatics, 88(1), 52-54. https://doi.org/10.1159/000495045

Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892-895. https://doi.org/10.1126/science.1165821

Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089-1108. https://doi.org/10.1002/jclp.20503

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13. https://doi.org/10.1002/wps.20375

Borsboom, D., & Cramer, A. O. J. (2013). Network analysis:An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91-121. https://doi.org/10.1146/annurev-clinpsy-050212-185608

Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., & Waldorp, L. J. (2011). The small world of psychopathology. PLoS ONE, 6(11), e27407. https://doi.org/10.1371/journal.pone.0027407

Borsboom, D., Fried, E. I., Epskamp, S., Waldorp, L. J., van Borkulo, C. D., van der Maas, H. L. J., & Cramer, A. O. J. (2017). False alarm? A comprehensive reanalysis of "Evidence that psychopathology symptom networks have limited replicability" by Forbes, Wright, Markon, and Krueger (2017). Journal of Abnormal Psychology, 126(7), 989-999. https://doi.org/10.1037/abn0000306

Borsboom, D., Mellenbergh, G. J., & Heerden, J. van. (2003). The theoretical status of latent variables. Psychological Review, 110(2), 203-219. https://doi.org/10.1037/0033-295X.110.2.203

Borsboom, D., Robinaugh, D. J., The Psychosystems Group, Rhemtulla, M., & Cramer, A. O. J. (2018). Robustness and replicability of psychopathology networks. World Psychiatry, 17(2), 143-144. https://doi.org/10.1002/wps. 20515

Boschloo, L., van Borkulo, C. D., Rhemtulla, M., Keyes, K. M., Borsboom, D., & Schoevers, R. A. (2015). The network structure of symptoms of the diagnostic and statistical manual of mental disorders. PLoS ONE, 10(9), e0137621. https://doi.org/10.1371/journal.pone.0137621

Brandt, M. J., Sibley, C. G., & Osborne, D. (2019). What is central to political belief system networks? Personality and Social Psychology Bulletin, 45(9), 1352-1364. https://doi.org/10.1177/0146167218824354

Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., … Tuerlinckx, F. (2013). A network approach to psychopathology:New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188. https://doi.org/10.1371/journal.pone.0060188

Bulteel, K., Tuerlinckx, F., Brose, A., & Ceulemans, E. (2018). Improved insight into and prediction of network dynamics by combining VAR and dimension reduction. Multivariate Behavioral Research, 53(6), 853-875. https://doi.org/10.1080/00273171.2018.1516540

Cao, X., Wang, L., Cao, C., Fang, R., Chen, C., Hall, B. J., & Elhai, J. D. (2019). Sex differences in global and local connectivity of adolescent posttraumatic stress disorder symptoms. Journal of Child Psychology and Psychiatry, 60(2), 216-224. https://doi.org/10.1111/jcpp.12963

Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. O. J. (2015). State of the aRt personality research:A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54, 13-29. https://doi.org/10.1016/j.jrp.2014.07.003

Costantini, G., Richetin, J., Borsboom, D., Fried, E. I., Rhemtulla, M., & Perugini, M. (2015). Development of indirect measures of conscientiousness:Combining a facets approach and network analysis. European Journal of Personality, 29(5), 548-567. https://doi.org/10.1002/per.2014

Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019). Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 68-78. https://doi.org/10.1016/j.paid. 2017.06.011

Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., … Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium:You can't like parties if you don't like people:Dimensions of normal personality as networks. European Journal of Personality, 26(4), 414-431. https://doi.org/10.1002/per.1866

Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J., & Borsboom, D. (2010). Comorbidity:A network perspective. Behavioral and Brain Sciences, 33(2-3), 137-150. https://doi.org/10.1017/S0140525X09991567

Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. J. (2016). Toward a formalized account of attitudes:The causal attitude network (CAN) model. Psychological Review, 123(1), 2-22. https://doi.org/10.1037/a0039802

Dalege, J., Borsboom, D., van Harreveld, F., & van der Maas, H. L. J. (2018). The attitudinal entropy (AE) framework as a general theory of individual attitudes. Psychological Inquiry, 29(4), 175-193. https://doi.org/10.1080/1047840X.2018.1537246

Di Pierro, R., Costantini, G., Benzi, I. M. A., Madeddu, F., & Preti, E. (2018). Grandiose and entitled, but still fragile:A network analysis of pathological narcissistic traits. Personality and Individual Differences, 140, 15-20. https://doi.org/10.1016/j.paid.2018.04.003

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics:Combining network and latent variable models. Psychometrika, 82(4), 904-927. https://doi.org/10.1007/s11336-017-9557-x

Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018). The gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453-480. https://doi.org/10.1080/00273171.2018.1454823

Erdős, P., & Rényi, A. (1959). On Random Graphs. I. Publicationes Mathematicae., 6, 290-297.

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. https://doi.org/10.1016/0378-8733(78)90021-7

Fried, E. I., Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, A. O. J., … Stroebe, M. (2015). From loss to loneliness:The relationship between bereavement and depressive symptoms. Journal of Abnormal Psychology, 124(2), 256-265. https://doi.org/10.1037/abn0000028

Fried, E. I., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems:A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1-10. https://doi.org/10.1007/s00127-016-1319-z

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441. https://doi.org/10.1093/biostatistics/kxm045

Haslbeck, J. M. B., & Fried, E. I. (2017). How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychological Medicine, 47(16), 2767-2776. https://doi.org/10.1017/S0033291717001258

Haslbeck, J. M. B., & Waldorp, L. J. (2015). MGM:Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data. Retrieved March 19, 2019 from http://arxiv.org/abs/1510.06871

Hyatt, C. S., Sleep, C. E., Lamkin, J., Maples-Keller, J. L., Sedikides, C., Campbell, W. K., & Miller, J. D. (2018). Narcissism and self-esteem:A nomological network analysis. PLoS ONE, 13(8), e0201088. https://doi.org/10.1371/journal.pone.0201088

Isvoranu, A.-M., van Borkulo, C. D., Boyette, L.-L., Wigman, J. T. W., Vinkers, C. H., Borsboom, D., & Group Investigators. (2017). A network approach to psychosis:Pathways between childhood trauma and psychotic symptoms. Schizophrenia Bulletin, 43(1), 187-196. https://doi.org/10.1093/schbul/sbw055

Jones, D. N., & Figueredo, A. J. (2013). The core of darkness:Uncovering the heart of the dark. European Journal of Personality, 27(6), 521-531. https://doi.org/10.1002/per.1893

Lauritzen, S. L. (1996). Graphical Models. Oxford, England:Clarendon Press.

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent Structure analysis. Boston:Houghton Mill.

Levine, M., & Davidson, E. H. (2005). Gene regulatory networks for development. Proceedings of the National Academy of Sciences, 102(14), 4936-4942. https://doi.org/10.1073/pnas.0408031102

Liu, Q., Fei, W., Yan, W., Peng, K., Sui, J., & Hu, C. (2019). Questionnaire Data from the Revision of a Chinese Version of Free Will and Determinism Plus Scale and Experiments on the Perceptual Prioritization of the Good Self. https://doi.org/10.31234/osf.io/7ngey

Marcus, D. K., Preszler, J., & Zeigler-Hill, V. (2018). A network of dark personality traits:What lies at the heart of darkness? Journal of Research in Personality, 73, 56-62. https://doi.org/10.1016/j.jrp.2017.11.003

McCrae, R. R., & Costa, P. T. Jr. (2008). Empirical and theoretical status of the five-factor model of personality traits. In G. Boyle, G. Matthews, & D. Saklofske (Eds.), The SAGE Handbook of Personality Theory and Assessment (Vol. 1, pp. 273-294). Thousand Oaks, CA:Sage. https://doi.org/10.4135/9781849200462

McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour Research and Therapy, 86, 95-104. https://doi.org/10.1016/j.brat.2016.06.006

McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental Disorders as Causal Systems:A Network Approach to Posttraumatic Stress Disorder. Clinical Psychological Science, 3(6), 836-849. https://doi.org/10.1177/2167702614553230

Milgram, S. (1967). The Small World Problem. Psychology Today, 1(1), 61-67.

Millar, R. B. (2011). Latent variable models. In Maximum Likelihood Estimation and Inference (pp. 202-232). Indianapolis, IN:John Wiley & Sons. https://doi.org/10.1002/9780470094846.ch10

Nagel, M., Watanabe, K., Stringer, S., Posthuma, D., & van der Sluis, S. (2018). Item-level analyses reveal genetic heterogeneity in neuroticism. Nature Communications, 9, Article 905. https://doi.org/10.1038/s41467-018-03242-8

Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409. https://doi.org/10.1073/pnas.98.2.404

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167-256. https://doi.org/10.1137/S003614450342480

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716-aac4716. https://doi.org/10.1126/science.aac4716

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks:Generalizing degree and shortest paths. Social Networks, 32(3), 245-251. https://doi.org/10.1016/j.socnet.2010.03.006

Opsahl, T., & Panzarasa, P. (2009). Clustering in weighted networks. Social Networks, 31(2), 155-163. https://doi.org/10.1016/j.socnet.2009.02.002

Park, H.-J., & Friston, K. (2013). Structural and functional brain networks:From connections to cognition. Science, 342(6158), 1238411-1238411. https://doi.org/10.1126/science.1238411

Pourahmadi, M. (2011). Covariance estimation:The GLM and regularization perspectives. Statistical Science, 26(3), 369-387. https://doi.org/10.1214/11-sts358

Rhemtulla, M., van Bork, R., & Cramer, A. O. J. (in press). Cross-lagged network models. Multivariate Behavioral Research. Retrived April 15, 2019 from https://osf.io/r24q6/

Ruzzano, L., Borsboom, D., & Geurts, H. M. (2015). Repetitive behaviors in autism and obsessive-compulsive disorder:New perspectives from a network analysis. Journal of Autism and Developmental Disorders, 45(1), 192-202. https://doi.org/10.1007/s10803-014-2204-9

Santos, H. P., Kossakowski, J. J., Schwartz, T. A., Beeber, L., & Fried, E. I. (2018). Longitudinal network structure of depression symptoms and self-efficacy in low-income mothers. PLoS ONE, 13(1), e0191675. https://doi.org/10.1371/journal.pone.0191675

Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct:A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43-53. https://doi.org/10.1016/j.newideapsych.2011.02.007

Sporns, O., & Honey, C. J. (2006). Small worlds inside big brains. Proceedings of the National Academy of Sciences, 103(51), 19219-19220. https://doi.org/10.1073/pnas.0609523103

Teichmann, S. A., & Babu, M. M. (2004). Gene regulatory network growth by duplication. Nature Genetics, 36(5), 492-496. https://doi.org/10.1038/ng1340

Tio, P., Epskamp, S., Noordhof, A., & Borsboom, D. (2016). Mapping the manuals of madness:Comparing the ICD-10 and DSM-IV-TR using a network approach. International Journal of Methods in Psychiatric Research, 25(4), 267-276. https://doi.org/10.1002/mpr.1503

Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry, 32(4), 425-443. https://doi.org/10.2307/2786545

van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4(5918), 1-10. https://doi.org/10.1038/srep05918

van Borkulo, C. D., Boschloo, L., Kossakowski, J. J., Tio, P., Schoevers, R., Borsboom, D., & Waldorp, L. (2016). Comparing network structures on three aspects:A permutation test. Submitted. Retrived March 19, 2019 from https://www.researchgate.net/publication/314750838_Comparing_network_structures_on_three_aspects_A_permutation_test

Wechsler, S. M., Benson, N., Machado, W. D. L., Bachert, C. M. D., & Gums, E. F. (2018). Adult temperament styles:A network analysis of their relationships with the Big Five Personality Model. European Journal of Education and Psychology, 11(1), 61-75. https://doi.org/10.30552/ejep.v11i1.186

World Health Organization (WHO). (1993). The ICD-10 Classification of Mental and Behavioural Disorders:Diagnostic Criteria for Research (ICD-10). Geneva:Author.

Xia, M., & He, Y. (2017). Functional connectomics from a "big data" perspective. NeuroImage, 160, 152-167. https://doi.org/10.1016/j.neuroimage.2017.02.031