doi:

DOI: 10.3724/SP.J.1259.2012.00427

Chinese Bulletin of Botany (植物学报) 2012/47:4 PP.427-436

Characterization and Selection of Reference Genes for Real-time Quantitative RT-PCR of Plants


Abstract:
Real-time quantitative RT-PCR (qRT-PCR) is one of the most common technologies used for gene expression and transcriptome analysis, with its high sensitivity, specificity, good reproducibility, wide dynamic quantification range and high-throughput capacity. Selecting the appropriate reference genes is the first step in analyzing the expression of genes of interest. Selecting appropriate reference genes depends on experimental conditions, and selection of reference genes changes after the experimental conditions. Therefore, the accuracy of results from qRT-PCR analysis largely depends on the reference genes used. In this paper, we give a comprehensive summary of reference genes for qRT-PCR, including their selection, characteristics of traditional reference genes, mining new reference genes, the advantage of combining different reference genes, and how to assess stable reference gene expression. The results provide a theoretical foundation for selecting appropriate reference genes for qRT-PCR of plants.

Key words:gene expression evaluation, gene expression stability, qRT-PCR, reference genes

ReleaseDate:2014-07-21 16:29:30



胡瑞波, 范成明, 傅永福 (2009). 植物实时荧光定量PCR内参基因的选择. 中国农业科技导报 11, 30-36.

孙美莲, 王云生, 杨冬青, 韦朝领, 高丽萍, 夏涛, 单育, 骆洋 (2010). 茶树实时荧光定量PCR分析中内参基因的选择. 植物学报 45, 579-587.

涂礼莉, 张献龙, 刘迪秋, 金双侠, 曹景林, 朱龙付, 邓锋林, 谭家福, 张存斌 (2007). 棉花纤维发育和体细胞胚发生过程中实时定量PCR内对照基因的筛选. 科学通报 52, 2379-2385.

Andersen CL, Jensen JL, Ørntoft TF (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245-5250.

Brunner AM, Yakovlev IA, Strauss SH (2004). Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4, 14.

Coker JS, Davis E (2003). Selection of candidate house-keeping controls in tomato plants using EST data. Biotechniques 35, 740-742, 744, 746.

Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros LMG, Romano E, Grossi-de-Sá MF, Vaslin M, Alves-Ferreira M (2009). Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breeding 23, 607-616.

Czechowski T, Stitt M, Altman T, Udvardi MK, Scheible WR (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139, 5-17.

Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 112-119.

Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GAW, Zumla A (2005). The implica-tions of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344, 141-143.

Die JV, Román B, Nadal S, González-Verdejo CI (2010). Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232, 145-153.

Expòsito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8, 131-142.

Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V (2007). A combined strategy of “in silico” tran-scriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol 63, 679-688.

Gachon C, Mingam A, Charrier B (2004). Real-time PCR: what relevance to plant studies? J Exp Bot 55, 1445-1454.

Guénin S, Mauriat M, Pelloux J, van Wuytswinkel O, Bellini C, Gutierrez L (2009). Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60, 487-493.

Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, van Wuytswinkel O (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6, 609-618.

Hong SY, Seo PJ, Yang MS, Xiang FN, Park CM (2008). Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8, 112.

Hu RB, Fan CM, Li HY, Zhang QZ, Fu YF (2009). Evaluation of putative reference genes for gene expression nor-malization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10, 93.

Huggett J, Dheda K, Bustin S, Zumla A (2005). Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6, 279-284.

Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ, Manners JM (2004). Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep 22, 325-337.

Jain M (2009). Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice. Plant Sci 176, 702-706.

Jian B, Liu B, Bi YR, Hou WS, Wu CX, Han TF (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9, 59.

Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003). Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25, 1869-1872.

Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008). Identification of four soy-bean reference genes for gene expression normalization. Plant Genome 1, 44-54.

Long XY, Wang JR, Ouellet T, Rocheleau H, Wei YM, Pu ZE, Jiang QT, Lan XJ, Zheng YL (2010). Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 74, 307-311.

Lossos IS, Czerwinski DK, Wechser MA, Lecy R (2003). Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukemia 17, 789-795.

Mascia T, Santovito E, Gallitelli D, Cillo F (2010). Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol Plant Pathol 11, 805-816.

Nicot N, Hausman JF, Hoffmann L, Evers D (2005). Housekeeping gene selection for real-time RT-PCR nor-malization in potato during biotic and abiotic stress. J Exp Bot 56, 2907-2914.

Nolan T, Hands RE, Bustin SA (2006). Quantification of mRNA using real-time RT-PCR. Nat Protoc 1, 1559-1582.

Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009). Identification and validation of reference genes for quan-titative RT-PCR normalization in wheat. BMC Mol Biol 10, 11.

Pfaffl MW (2006). Relative quantification. In: Dorak MT, ed. Real-time PCR. New York: International University Line. pp. 63-82.

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnol Lett 26, 509-515.

Quackenbush J (2002). Microarray data normalization and transformation. Nat Genet 32, 496-501.

Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006). An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6, 27.

Remans T, Smeets K, Opdenakker K, Mathijsen D, Van- gronsveld J, Cuypers A (2008). Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227, 1343-1349.

Schmid H, Cohen CD, Henger A, Irrgang S, Schlöndorff D, Kretzler M (2003). Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int 64, 356-360.

Silver N, Best S, Jiang J, Thein SL (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7, 33.

Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999). House- keeping genes as internal standards: use and limits. J Biotechnol 75, 291-295.

Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z (2009). Selection of reliable reference genes for gene expression studies in peach using real time PCR. BMC Mol Biol 10, 71.

Tu LL, Zhang XL, Liu DQ, Jin SX, Cao JL, Zhu LF, Deng FL, Tan JF, Zhang CB (2007). Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chin Sci Bull 52, 3110-3117.

Udvardi MK, Czechowski T, Scheible WR (2008). Eleven golden rules of quantitative RT-PCR. Plant Cell 20, 1736-1737.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002). Accurate nor-malization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, 0034.1-0034.11.

Volkov RA, Panchuk II, Schöffl F (2003). Heat-stress dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54, 2343-2349.

Wong ML, Medrano JF (2005). Real-time PCR for mRNA quantitation. Biotechniques 39, 75-85.

Zhu J, He FH, Song SH, Wang J, Yu J (2008). How many human genes can be defined as housekeeping with current expression data? BMC Genomics 9, 172.

PDF