DOI: 10.3724/SP.J.1096.2013.30563

Chinese Journal of Analytical Chemistry (分析化学) 2013/41:12 PP.1795-1800

Construction of Biomimetic Interface by Layer-by-Layer Self-Assembly Technique for Electrochemical Amperometric Immunosensing Applications

A novel nontoxic biomimetic interface for developing label-free amperometric immunosensor based on layer-by-layer self-assembly of positively charged ferrocene-branched chitosan/multiwalled carbon nanotubes (CS-Fc/MWNTs) and negatively charged gold nanoparticles (Au NPs) onto 3-mercaptopropane-sulfonic, sodium salt (MPS)-modified gold electrode surface was described. The constructed three-dimensional mutilayer network structure provides more stereo sites and ideal platform for further immobilization of antibody to prepare immunosensors. Using hepatitis B surface antigen (HBsAg) as a model, the proplsed immunosensor exhibits a specific response to HBsAg in the concentration range of 0.1-350 μg/L with a detection limit of 0.037 μg/L (S/N=3). The relative error between the results obtained from the immunosensor and the standard method proposed by ELISA was -4.5%-8.3%, indicating that the two methods were in acceptable agreement and the proposed method could be applied to the clinical determination of HBsAg in human serum for clinical diagnosis.

Key words:Immunosensor,Layer-by-layer self-assembly technique,Ferrocene-branched chitosan,Multiwalled carbon nanotubes,Gold nanoparticles

ReleaseDate:2015-04-19 11:07:47

王广凤, 朱艳红, 陈 玲, 王 伦. 分析化学, 2013, 41(4): 608-615

1 WANG Guang-Feng, ZHU Yan-Hong, CHEN Ling, WANG Lun. Chinese J. Anal. Chem., 2013, 41(4): 608-615

张 岩, 庄惠生, 陈寒玉. 高等学校化学学报, 2013, 34(5): 1092-1098

2 ZHANG Yan, ZHUANG Hui-Sheng,CHEN Han-Yu. Chem. J. Chinese Universities, 2013, 34(5): 1092-1098

3 Öennerfjord P, Emnéus J, Marko-Varga G, Gorton L, Domínguez E. Biosens. Bioelectron., 1995, 10(6-7): 607-619

4 Yaropolov A I, Kharybin A N, Emméus J, Marko-Varga G, Gorton L. Anal. Chim. Acta, 1995, 308(1-3): 137-144

5 Cosnier S, Lepellec A, Guidetti B, Rico-Lattes I. J. Electroanal. Chem., 1998, 449(1-2): 165-171

6 Lvov Y, Lu Z, Schenkman J B, Zu X, Rusling J F. J. Am. Chem. Soc., 1998, 120(17): 4073-4080

7 Yuan Y R, Yuan R, Chai Y Q, Zhuo Y, Miao X M. J. Electroanal. Chem., 2009, 626(1-2): 6-13

8 Jeong B, Akter R, Han O H, Rhee C K, Rahman M A. Anal. Chem., 2013, 85(3): 1784-1791

9 Zhang J J, Zheng T T, Cheng F F, Zhu J J. Chem. Commun., 2011, 47(4): 1178-1180

10 Huang K J, Wu Z W, Wu Y Y, Liu Y M. Can. J. Chem., 2012, 90(7): 608-615

11 Gao Z D, Guan F F, Li C Y, Liu H F, Song Y Y. Biosens. Bioelectron., 2013, 41: 771-775

12 Qu J Y, Shen Y, Qu X H, Dong S J. Chem. Commun., 2004, (1): 34-35

13 Zhang M N, Su L, Mao L Q. Carbon, 2006, 44(2): 276-283

14 Qiu J D, Peng H Z, Liang R P, Li J, Xia X H. Langmuir, 2007, 23(4): 2133-2137

15 Siebrands T, Giersig M, Mulvaney P, Fischer C H. Langmuir, 1993, 9(9): 2297-2300

16 Cho S J, Idrobo J C, Olamit J, Liu K, Browning N D, Kauzlarich S M. Chem. Mater., 2005, 17(12): 3181-3186

17 Pang L L, Li J S, Jiang J H, Le Y, Shen G L, Yu R Q. Sensors and Actuators B, 2007, 127(2): 311-316

18 Huang H, Yang X. Colloid. Surface. A., 2003, 226(1-3): 77-86

19 Fu Y, Yuan R, Chai Y, Zhang Y, Peng Y. Electroanal., 2006, 18(24): 2451-2457

20 Zhuo Y, Yuan P X, Yuan R, Chai Y Q, Hong C L. Biomaterials, 2008, 29(10): 1501-1508

21 Liang R P, Peng H Z, Qiu J D. J. Colloid Interf. Sci., 2008, 320(1): 125-131

22 Yuan R, Tang D, Chai Y, Zhong X, Liu Y, Dai J. Langmuir, 2004, 20(17): 7240-7245

23 Hanaee H, Ghourchian H, Ziaee A A. Anal. Biochem., 2007, 370(2): 195-200