doi:

DOI: 10.3724/SP.J.1096.2013.30638

Chinese Journal of Analytical Chemistry (分析化学) 2013/41:12 PP.1915-1918

Determination of Arsenic in High Salinity and Calcium Chloride Type Groundwater by Dynamic Reaction Cell-Inductively Coupled Plasma Mass Spectrometry


Abstract:
A new procedure for the direct determination of total arsenic in high salinity and CaCl2 type groundwater has been developed. In order to remove the polyatomic interferences 40Ar35Cl+, 40Ca35Cl+, 39K36Ar+ arising from the direct analysis of high salinity and CaCl2 type groundwater, 75As+, the mass for general detection, was effectively changed to 75As16O+ which could be detected at m/z 91 by reaction with oxygen in a Dynamic Reaction Cell (DRC). The DRC parameters were optimized, the background equivalent concentration (BEC) was minimum when O2 gas flow rate was 0.1 mL/min and the rejection parameter q (RPq) of DRC was 0.55. The signal intensity of 75As16O+ was improved 4-fold by addition of 3% methanol into sample solution. The accuracy was verified by the analysis of certified reference materials of sea-water (CASS-5, NASS-4). Detection limits of 0.011 μg/L and the relative standard deviation of 1.8% were obtained.

Key words:Inductively coupled plasma mass spectrometry,Arsenic,Calcium chloride type groundwater,High salinity groundwater

ReleaseDate:2015-04-19 11:08:21



1 Sarkar B, Solaiman A H M, Das A K, Chowdhury D A. J. Exper. Sci., 2011, 2(1): 38-41

刘希光, 于华华, 赵增芹, 李智恩, 徐祖洪, 李鹏程. 光谱学与光谱分析, 2005, 25(6): 964-967

郭华明, 刘春华. 分析化学, 2012, 40(7): 1092-1097

2 Buragohain M, Sarma H P. Sci. Revs. Chem. Commun., 2012, 2(1): 7-11

3 LIU Xi-Guang, YU Hua-Hua, ZHAO Zeng-Qin, LI Zhi-En, XU Zu-Hong, LI Peng-Cheng. Spectroscopy and Spectral Analysis, 2005, 25(6): 964-967

4 GUO Hua-Ming, LIU Chun-Hua. Chinese J. Anal. Chem., 2012, 40(7): 1092-1097

5 Hu S, Lu J S, Jing C Y. Journal of Environmental Sciences, 2012, 24(7): 1341-1346

6 Polizzotto M L, Kocar B D, Benner S G, Sampson M, Fendorf S. Nature, 2008, 454, 505-508

7 Cheng Z, Zheng Y, Mortlock R, Geen A V. Anal. Bioanal. Chem., 2004, 379(3): 512-518

8 Chakraborti D, Jonghe W D, Adams F. Anal. Chim. Acta, 1980, 119(2): 331-340

9 Zhang L, Morita Y, Sakuragawa A, Isozaki A. Talanta, 2007, 72(2): 723-729

10 Andreae M O. Anal. Chem., 1977, 49(6): 820-823

11 Howard A G, Comber S D W. Microchim. Acta, 1992, 109(1-4): 27-33

12 Field M P, Vigne M L, Murphy K R, Ruiz G M, Sherell R M. J. Anal. At. Spectrom., 2007, 22(9): 1145-1151

13 Chandrasekaran K, BalaramaKrishna M V, Karunasagar D. J. Anal. At. Spectrom., 2010, 25(8): 1348-1353

14 Grindlay G, Mora J, Gras L, Loos-Vollebregt M T C D. Anal. Chim. Acta, 2009, 652(1-2): 154-160

15 Bluemlein K, Krupp E M, Feldmann J. J. Anal. At. Spectrom., 2009, 24(1): 108-113

16 Colon M, Hidalgo M, Iglesias M. J. Anal. At. Spectrom., 2009, 24(4): 518-521

17 Hu Z C, Gao S, Hu S H, Yuan H L, Liu X M, Liu Y S. J. Anal. At. Spectrom., 2005, 20(11): 1263-1269

18 Wang J S, Evans E H, Caruso J A. J. Anal. At. Spectrom., 1992, 7(6): 929-936

19 Guo W, Hu S H, Zhang J Y, Hu Z C, Zhang H F, Wang Y X. Talanta, 2012, 91: 60-64

20 Tsoi Y K, Leung K S Y. J. Anal. At. Spectrom., 2010, 25(6): 880-885

21 Guo W, Hu S H, Zhang J Y, Jin L L, Wang X J, Zhu Z. L, Zhang H F. J. Anal. At. Spectrom., 2011, 26(10): 2076-2080

22 Pick D, Leiterer M, Einax J W. Microchem. J., 2010, 95(2): 315-319

23 Larsen E H, Sturup S. J. Anal. At. Spectrom., 1994, 9(10): 1099-1105

24 Hu Z C, Hu S H, Gao S, Liu Y H, Lin S L. Spectrochim. Acta, Part B, 2004, 59(9): 1463-1470