DOI: 10.3724/SP.J.1095.2014.30137

Chinese Journal of Applied Chemistry (应用化学) 2013/30:12 PP.1411-1416

Preparation of Polypropylene Composites Filled with Surface-modified Calcium Carbonate by in-situ Solid Phase Grafting

The surface of calcium carbonate(CaCO3) was firstly pretreated with maleic anhydride(MAH) to introduce active double bond groups, then grafted chemically by polypropylene wax(PPW) via in-situ solid phase grafting to increase its compatibility with polypropylene. Three kinds of modified CaCO3 with different chemical grafting ratio of PPW were prepared by changing experimental conditions, and their PP-based composites were produced. The effects of interfacial interaction between CaCO3-MAH-PPW and PP matrix on the strength of PP-based composite filled with modified CaCO3 were studied. The results show that the dispersibility of CaCO3-MAH-PPW in PP is improved, suggesting an improved compatibility between them. With the improvement of grafting ratio of PPW on the surface of CaCO3, the interfacial interaction between CaCO3 and PP increases gradually. When the grafting ratio of PPW is 4.48 mg PPW/g CaCO3, the interfacial interaction between CaCO3 and PP is strongest and the decrease of tensile strength of composites is the least, the young′s modulus increases most at the same time. When m(PP):m(CaCO3)=100:50, the young′s modulus reaches 0.86 GPa, which is the 1.63 times of PP′s. When the grafting ratio of PPW is 2.49 mg PPW/g CaCO3, the interfacial interaction between CaCO3 and PP is suitable and the notch impact strength of composites improves the most. And when m(PP):m(CaCO3)=100:10, its notch impact strength is 3.91 kJ/m2, which is the 1.35 times of PP′s.

Key words:polypropylene,calcium carbonate,solid phase grafting in-situ,interfacial interaction,material strength

ReleaseDate:2015-06-08 13:47:31

[1] Zebarjad S M,Sajjadi S A,Tahani M. Modification of Fracture Toughness of Isotactic Polypropylene with a Combination of EPR and CaCO3 Particles[J]. J Mater Process Tech,2006,175(1/3):446-451.

[2] Zokaei S,Lesan Khosh M R,Bagheri R. Study of Scratch Resistance in Homo- and Co-polypropylene Filled with Nanometric Calcium Carbonate[J]. Mater Sci Eng A,2007,445/446:526-536.

[3] QIAO Fang,ZHU Xiaoguang,GUAN Shumin,et al. Criterion of Interfacial Adhesion for Filler Toughening Polyolefin Composites[J]. Polym Mater Sci Eng,1996,12(6):63-67(in Chinese).乔放,朱晓光,关淑敏,等。 硅灰石增韧聚合物的界面粘接判据[J]. 高分子材料科学与工程,1996,12(6):63-67.

[4] FU Zheng. Polymer Material Strength and Failure Analysis[M]. Beijing:Chemical Industry Press,2005:110-111(in Chinese).傅政。 高分子材料强度及破坏行为[M]. 北京:化学工业出版社,2005,6:110-111.

[5] Wang Y H,Shen H,Li G,et al. Effect of Interfacial Interaction on the Crystallization and Mechanical Pproperties of PP/Nano-CaCO3 Composites Modified by Compatibilizers[J]. J Appl Polym Sci,2009,113(3):1584-1592.

[6] WANG Yuhai,ZHANG Zitao,SHEN Hao. Investigation on Interfacial Interaction in Nano-CaCO3/Compatibilizer/Polypropylene Composites[J]. Acta Polym Sin,2010,(12):1444-1450(in Chinese).王玉海,章自涛,沈浩。 纳米CaCO3/相容剂/PP中的界面相互作用研究[J]. 高分子学报,2010,(12):1444-1450.

[7] JIN Jinping,ZHANG Hengjing,JIANG Hui. Effect of Compatibilizer on the Properties and Morphology of PP/PP-g-MAH/CaCO3 Composites[J]. Plast Sci Technol,2011,39(8):55-58(in Chinese).金建平,张恒靖,蒋辉。 增容剂对PP/PP-g-MAH/CaCO3复合材料性能与形态的影响[J]. 塑料科技,2011,39(8):55-58.

[8] JIA Runli,MING Yan,WAN Shun. Reactive Compatibilization and Its Application in Polymer Modification[J]. Polym Bull,2003,(3):71-79(in Chinese).贾润礼,明艳,万顺。 几种反应型相容剂及其在聚合物共混改性中的应用[J]. 高分子通报,2003,(3):71-79.

[9] SHENG Yu,ZHU Deqin,WANG Jianfeng. A Preparation Method to Inorganic Powder with “Core-Shell” Structure Through Surface Modification:CN,200710144038.6[P],2010-11-8(in Chinese).生瑜,朱德钦,王剑峰。 一种经表面改性制备具有“核-壳”结构的无机粉体的方法:中国,200710144038.6[P],2007-12-18.

[10] SHENG Yu,ZHU Deqin,WANG Jianfeng,et al. Calcium Carbonate Surface Coating Modification and Its Effect on the Mechanical Properties of Filled Polypropylene[J]. Acta Polym Sin,2008,(8):813-817(in Chinese).生瑜,朱德钦,王剑峰,等。 CaCO3表面包覆改性及其对填充PP力学性能的影响[J]. 高分子学报,2008,(8):813-817.

[11] GB/T 1040-2006. Plastics-Determination of Tensile Properties[S]. Beijing:China Standards Press,2006(in Chinese).GB/T 1040-2006. 塑料拉伸性能的测定[S]. 北京:中国标准出版社,2006.

[12] GB/T1043-2008. Plastics-Determination of Charpy Impact Properties[S]. Beijing:China Standards Press,2008(in Chinese).GB/T1043-2008. 塑料简支梁冲击性能的测定[S]. 北京:中国标准出版社,2008.

[13] Zhang Q X,Yu Z Z,Xie X L,et al. Crystallization and Impact Energy of Polypropylene/CaCO3 Nanocomposites with Nonionic Modifier[J]. Polymer,2004,45(17):5985-5994.

[14] Demjén Z,Pukánszky B,Nagy J. Evaluation of Interfacial Interaction in Polypropylene/Surface Treated CaCO3 Composites[J]. Compos Part A:Appl Sci Manuf,1998,29(3):323-329.

[15] Guth E. Theory of Filler Reinforcement[J]. J Appl Phys,1945,16(1):20-25.

[16]  Zhang Q X,Yu Z Z,Xie X L,et al. Crystallization and Impact Energy of Polypropylene/CaCO3 Nanocomposites with Nonionic Modifier[J]. Polymer,2004,45(17):5985-5994.

[17] Maiti S N,Lopez B H. Tensile Properties of Polypropylene/kaolin Composites[J]. J Appl Polym Sci,1992,44(2):353-360.

[18] Kucera J,Nezbedova E. Poly(propylene) with Micro-fillers-the Way of Enhancement of Toughness[J]. Polym Adv Tech,2007,18(2):112-116.